Eskesenbossen1619

Z Iurium Wiki

Verze z 20. 9. 2024, 18:19, kterou vytvořil Eskesenbossen1619 (diskuse | příspěvky) (Založena nová stránka s textem „Using spin-polarized scanning tunneling microscopy and density functional theory, we have studied the magnetic properties of Pd/Fe atomic bilayers on Re(00…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Using spin-polarized scanning tunneling microscopy and density functional theory, we have studied the magnetic properties of Pd/Fe atomic bilayers on Re(0001). Two kinds of magnetic ground states are discovered due to different types of stacking of the Pd adlayer on Fe/Re(0001). For fcc stacking of Pd on Fe/Re(0001), it is a spin spiral propagating along the close-packed (ΓK[over ¯]) direction with a period of about 0.9 nm, driven by frustrated exchange and Dzyaloshinskii-Moriya interactions. For the hcp stacking, the four-site four-spin interaction stabilizes an up-up-down-down state propagating perpendicular to the close-packed direction (along ΓM[over ¯]) with a period of about 1.0 nm. Our work shows how higher-order exchange interactions can be tuned at interfaces.We present the first results of a search for invisible axion dark matter using a multiple-cell cavity haloscope. This cavity concept was proposed to provide a highly efficient approach to high-mass regions compared to the conventional multiple-cavity design, with larger detection volume, simpler detector setup, and a unique phase-matching mechanism. Searches with a double-cell cavity superseded previous reports for the axion-photon coupling over the mass range between 13.0 and 13.9  μeV. This result not only demonstrates the novelty of the cavity concept for high-mass axion searches, but also suggests it can make considerable contributions to the next-generation experiments.We investigate the growth of aggregates made of adhesive frictionless oil droplets, piling up against a solid interface. Monodisperse droplets are produced one by one in an aqueous solution and float upward to the top of a liquid cell where they accumulate and form an aggregate at a flat horizontal interface. Sepantronium chemical structure Initially, the aggregate grows in 3D until its height reaches a critical value. Beyond a critical height, adding more droplets results in the aggregate spreading in 2D along the interface with a constant height. We find that the shape of such aggregates, despite being granular in nature, is well described by a continuum model. The geometry of the aggregates is determined by a balance between droplet buoyancy and adhesion as given by a single parameter, a "granular" capillary length, analogous to the capillary length of a liquid.We investigate many-body spin squeezing dynamics in an XXZ model with interactions that fall off with distance r as 1/r^α in D=2 and 3 spatial dimensions. In stark contrast to the Ising model, we find a broad parameter regime where spin squeezing comparable to the infinite-range α=0 limit is achievable even when interactions are short ranged, α>D. A region of "collective" behavior in which optimal squeezing grows with system size extends all the way to the α→∞ limit of nearest-neighbor interactions. Our predictions, made using the discrete truncated Wigner approximation, are testable in a variety of experimental cold atomic, molecular, and optical platforms.We study the dynamics of torque driven spherical spinners settled on a surface, and demonstrate that hydrodynamic interactions at finite Reynolds numbers can lead to a concentration dependent and nonuniform crystallization. At semidilute concentrations, we observe a rapid formation of a uniform hexagonal structure in the spinner monolayer. We attribute this to repulsive hydrodynamic interactions created by the secondary flow of the spinning particles. Increasing the surface coverage leads to a state with two coexisting spinner densities. The uniform hexagonal structure deviates into a high density crystalline structure surrounded by a continuous lower density hexatically ordered state. We show that this phase separation occurs due to a nonmonotonic hydrodynamic repulsion, arising from a concentration dependent spinning frequency.Turbulent fluid flows exhibit a complex small-scale structure with frequently occurring extreme velocity gradients. Particles probing such swirling and straining regions respond with an intricate shape-dependent orientational dynamics, which sensitively depends on the particle history. Here, we systematically develop a reduced-order model for the small-scale dynamics of turbulence, which captures the velocity gradient statistics along particle paths. An analysis of the resulting stochastic dynamical system allows pinpointing the emergence of non-Gaussian statistics and nontrivial temporal correlations of vorticity and strain, as previously reported from experiments and simulations. Based on these insights, we use our model to predict the orientational statistics of anisotropic particles in turbulence, enabling a host of modeling applications for complex particulate flows.We introduce a model of trapped bosons with contact interactions as well as Coulomb repulsion or gravitational attraction in one spatial dimension. We find the exact ground-state energy and many-body wave function. The density profile and the pair-correlation function are sampled using Monte Carlo method and show a rich variety of regimes with crossovers between them. Strong attraction leads to a trapped McGuire quantum soliton. Weak repulsion results in an incompressible Laughlin-like fluid with flat density, well reproduced by a Gross-Pitaevskii equation with long-range interactions. Stronger repulsion induces Friedel oscillations and the eventual formation of a Wigner crystal.Precise predictions are provided for the production of a Z boson and a b-jet in hadron-hadron collisions within the framework of perturbative QCD, at O(α_s^3). To obtain these predictions, we perform the first calculation of a hadronic scattering process involving the direct production of a flavored jet at next-to-next-to-leading-order accuracy in massless QCD and extend techniques to also account for the impact of finite heavy-quark mass effects. The predictions are compared to CMS data obtained in pp collisions at a center-of-mass energy of 8 TeV, which are the most precise data from run I of the LHC for this process, where a good description of the data is achieved. To allow this comparison, we have performed an unfolding of the data, which overcomes the long-standing issue that the experimental and theoretical definitions of jet flavor are incompatible.

Autoři článku: Eskesenbossen1619 (McCabe Self)