Alstonborch7003
Item analysis is important in examining the quality of items. The main aims of this sub-study were to assess and improve the psychometric properties of the modified version of the Routine Blood Transfusion Knowledge Questionnaire (RBTKQ-2) and produce an optimized version (RBTKQ-O) of it.
Statistical item analysis was performed on the RBTKQ-2 after completion by 305 nurses.
There were one (3%) easy, 15 (47%) moderately difficult, and 16 (50%) difficult items. Twenty six (81%) items and six (19%) had positive significant and weak point-biserial correlation respectively. The majority of distractors (
= 66, 64%) were functional. Four sources of information, including item analysis data, informed the development of the RBTKQ-O.
The RBTKQ-O addressed the limitations that were identified in the versions published earlier. This version can be used by researchers and academics worldwide.
The RBTKQ-O addressed the limitations that were identified in the versions published earlier. This version can be used by researchers and academics worldwide.Botulism is caused by a potent neurotoxin that blocks neuromuscular transmission, resulting in death by asphyxiation. Currently, the therapeutic options are limited and there is no antidote. Here, we harness the structural and trafficking properties of an atoxic derivative of botulinum neurotoxin (BoNT) to transport a function-blocking single-domain antibody into the neuronal cytosol where it can inhibit BoNT serotype A (BoNT/A1) molecular toxicity. Post-symptomatic treatment relieved toxic signs of botulism and rescued mice, guinea pigs, and nonhuman primates after lethal BoNT/A1 challenge. These data demonstrate that atoxic BoNT derivatives can be harnessed to deliver therapeutic protein moieties to the neuronal cytoplasm where they bind and neutralize intracellular targets in experimental models. The generalizability of this platform might enable delivery of antibodies and other protein-based therapeutics to previously inaccessible intraneuronal targets.Necrotizing enterocolitis (NEC) causes acute intestinal necrosis in premature infants and is associated with severe neurological impairment. In NEC, Toll-like receptor 4 is activated in the intestinal epithelium, and NEC-associated brain injury is characterized by microglial activation and white matter loss through mechanisms that remain unclear. We now show that the brains of mice and humans with NEC contained CD4+ T lymphocytes that were required for the development of brain injury. Inhibition of T lymphocyte influx into the brains of neonatal mice with NEC reduced inflammation and prevented myelin loss. Adoptive intracerebroventricular delivery of gut T lymphocytes from mice with NEC into Rag1-/- recipient mice lacking CD4+ T cells resulted in brain injury. Brain organoids derived from mice with or without NEC and from human neuronal progenitor cells revealed that IFN-γ release by CD4+ T lymphocytes induced microglial activation and myelin loss in the organoids. IFN-γ knockdown in CD4+ T cells derived from mice with NEC abrogated the induction of NEC-associated brain injury after adoptive transfer to naïve Rag1-/- recipient mice. AZD2171 purchase T cell receptor sequencing revealed that NEC mouse brain-derived T lymphocytes shared homology with gut T lymphocytes from NEC mice. Intraperitoneal injection of NEC gut-derived CD4+ T lymphocytes into naïve Rag1-/- recipient mice induced brain injury, suggesting that gut-derived T lymphocytes could mediate neuroinflammation in NEC. These findings indicate that NEC-associated brain injury may be induced by gut-derived IFN-γ-releasing CD4+ T cells, suggesting that early management of intestinal inflammation in children with NEC could improve neurological outcomes.Cell-based therapies are emerging as effective agents against cancer and other diseases. As autonomous "living drugs," these therapies lack precise control. Chimeric antigen receptor (CAR) T cells effectively target hematologic malignancies but can proliferate rapidly and cause toxicity. We developed ON and OFF switches for CAR T cells using the clinically approved drug lenalidomide, which mediates the proteasomal degradation of several target proteins by inducing interactions between the CRL4CRBN E3 ubiquitin ligase and a C2H2 zinc finger degron motif. We performed a systematic screen to identify "super-degron" tags with enhanced sensitivity to lenalidomide-induced degradation and used these degradable tags to generate OFF-switch degradable CARs. To create an ON switch, we engineered a lenalidomide-inducible dimerization system and developed split CARs that required both lenalidomide and target antigen for activation. Subtherapeutic lenalidomide concentrations controlled the effector functions of ON- and OFF-switch CAR T cells. In vivo, ON-switch split CARs demonstrated lenalidomide-dependent antitumor activity, and OFF-switch degradable CARs were depleted by drug treatment to limit inflammatory cytokine production while retaining antitumor efficacy. Together, the data showed that these lenalidomide-gated switches are rapid, reversible, and clinically suitable systems to control transgene function in diverse gene- and cell-based therapies.Although chemotherapeutic agents have been used for decades, the mechanisms of action, mechanisms of resistance, and the best treatment schedule remain elusive. Mitomycin C (MMC) is the gold standard treatment for non-muscle-invasive bladder cancer (NMIBC). However, it is effective only in a subset of patients, suggesting that, aside from cytotoxicity, other mechanisms could be involved in mediating the success of the treatment. Here, we showed that MMC promotes immunogenic cell death (ICD) and in vivo tumor protection. MMC-induced ICD relied on metabolic reprogramming of tumor cells toward increased oxidative phosphorylation. This favored increased mitochondrial permeability leading to the cytoplasmic release of mitochondrial DNA, which activated the inflammasome for efficient IL-1β (interleukin-1β) secretion that promoted dendritic cell maturation. Resistance to ICD was associated with mitochondrial dysfunction related to low abundance of complex I of the respiratory chain. Analysis of complex I in patient tumors indicated that low abundance of this mitochondrial complex was associated with recurrence incidence after chemotherapy in patients with NMIBC.