Brucecontreras5687

Z Iurium Wiki

Verze z 20. 9. 2024, 17:22, kterou vytvořil Brucecontreras5687 (diskuse | příspěvky) (Založena nová stránka s textem „Plant specific miRNAs (Novel miRNAs) are well known to perform distinctive functions in biological processes. Identification of new miRNAs is necessary to…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Plant specific miRNAs (Novel miRNAs) are well known to perform distinctive functions in biological processes. Identification of new miRNAs is necessary to understand their gene regulation. Degradome provides an opportunity to explore the miRNA functions by comparing the miRNA population and their degraded products. In the present study, Small RNA sequencing data was used to identify novel miRNAs. Further, degradome sequencing was carried out to identify miRNAs targets in the plant, Chlorophytum borivilianum. The present study supplemented 40 more novel miRNAs correlating degradome data with smallRNAome. Novel miRNAs, complementary to mRNA partial sequences obtained from degradome sequencing were actually targeting the later. A big pool of miRNA was established by using Oryza sativa, Arabidopsis thaliana, Populus trichocarpa, Ricinus communis, and Vitis vinifera genomic data. Targets were identified for novel miRNAs and total 109 targets were predicted. BLAST2GO analysis elaborate about localization of novel miRNAs' targets and their corresponding KEGG (Kyoto Encyclopedia for Genes and Genomes) pathways. Identified targets were annotated and were found to be involved in significant biological processes like Nitrogen metabolism, Pyruvate metabolism, Citrate cycle (TCA cycle), photosynthesis, and Glycolysis/Gluconeogenesis. The present study provides an overall view of the miRNA regulation in multiple metabolic pathways that are involved in plant growth, pathogen resistance and secondary metabolism of C. borivilianum. © 2020 Production and hosting by Elsevier B.V. learn more on behalf of KeAi Communications Co., Ltd.The 31- and 32-nt 5'-fragments of Y4-RNA (Y4RNAfr) exist abundantly in human plasma. The Y4RNAfr can function as 5'-half-tRNA-type sgRNA for tRNase ZL, although we do not know yet what its physiological roles are and what cellular RNAs are its genuine targets. In this paper, we analyzed the effects of the Y4RNAfr on cell viability and transcriptomes using HL60, RPMI-8226, and HEK293 cells, and Y4RNAfr-binding RNAs in A549 cells. Although the Y4RNAfr hardly affected the viability of HL60, RPMI-8226, and HEK293 cells, it significantly affected their transcriptome. The DAVID analysis for > 2-fold upregulated and downregulated genes suggested that the Y4RNAfr may affect various KEGG pathways. We obtained 108 Y4RNAfr-binding RNAs in A549 cells, searched potential secondary structures of complexes between theY4RNAfr and its binding RNAs for the pre-tRNA-like structure, and found many such structures. One of the five best fitted structures was for the MKI67 mRNA, suggesting that the Y4RNAfr can decrease the cellular MKI67 level through guiding the cleavage of the MKI67 mRNA by tRNase ZL. This may be one of the underlying mechanisms for the reported observation that the Y4RNAfr suppresses the proliferation of A549 cells. © 2020 Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.The nucleus is an essential hub for the regulation of gene expression in both spatial and temporal contexts. The complexity required to manage such a feat has resulted in the evolution of multiple sub-structures in the nucleus such as the nucleolus, small cajal bodies and nuclear stress bodies. The paraspeckle is another membraneless structure composed of RNA elements, primarily the long non-coding RNA (lncRNA) Nuclear Enriched Abundant Transcript 1 (NEAT1), associated with RNA binding proteins (RBPs). The paraspeckle is showing signs of being involved in various aspects of gene regulation and its role in many pathologies from cancer to viral infection is beginning to be addressed. Research into paraspeckle-directed gene regulation highlights the increase in the appreciation of the biological significance of non-coding RNA (ncRNA). This review will thus cover the basis of how a structure as large as a paraspeckle forms along with its functions. It will also explore how it effects pathological conditions and can be used in clinical intervention, with special emphasis on the multitude of methods utilised by paraspeckles for apoptotic regulation. © 2020 Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.A recent study published to screen RPE65 in 187 families with Leber Congenital Amaurosis (LCA) by Zilin Zhong in 2019. There are seven novel variants were identified in RPE65, which was associated with LCA, but among only five were missense mutations [(c.124C > T, p.(Leu42Phe), c.149T > C, p. (Phe50Ser), c.340A > C, p.(Asn114His), c.425A > G, p.(Asp142Gly) and c.1399C > G, p.(Pro467Ala)] in the Chinese population and potentially facilitates its clinical implementation. Further in-continuation of this study to the target of five novel missense mutations were the analysis of both structural and functional impact by the molecular dynamics and simulation. The result of five missense mutations might in critical structural alterations of RPE65 protein, disrupt its membrane association or rescue the activity of enzyme due to thermodynamics stability, and for this reason impair its isomerohydrolase activity, resulting in retinal dystrophy. These observations suggest that the reduced protein stability and altered subcellular localization of RPE65 might signify a mechanism for these mutations to lead to vision loss in LCA patients. © 2020 Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.Cartilage injury affects millions of people throughout the world, and at this time there is no cure. While transplantation of stem cells has shown some success in the treatment of injured cartilage, such treatment is limited by limited cell sources and safety concerns. To overcome these drawbacks, a microscaffolds system was developed capable of targeting, reducing the inflammatory response and recruiting endogenous progenitor cells to cartilage-defect. Erythropoietin (EPO)-loaded-hyaluronic acid (HA) microscaffolds (HA + EPO) were fabricated and characterized. HA-microscaffolds showed good cell-compatibility and could target chondrocytes via CD44 receptors. HA + EPO was designed to slowly release EPO while recruiting progenitor cells. Finally, the ability of HA + EPO to repair cartilage-defects was assessed using a rabbit model of full-thickness cartilage-defect. Our results showed that the intra-articular administration of EPO, HA, and EPO + HA reduced the number of inflammatory cells inside the synovial-fluid, while EPO + HA had the greatest anti-inflammatory effects.

Autoři článku: Brucecontreras5687 (Franco Kirkeby)