Kokholmmcculloch6702

Z Iurium Wiki

Verze z 20. 9. 2024, 16:53, kterou vytvořil Kokholmmcculloch6702 (diskuse | příspěvky) (Založena nová stránka s textem „The study also indicates the possibility of simultaneous removal of both metal ions using low cost bioadsorbent, which is economical especially for applica…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The study also indicates the possibility of simultaneous removal of both metal ions using low cost bioadsorbent, which is economical especially for application in small-scale industries.In this paper, concentrations of some heavy metals in surficial sediments of the International Anzali Wetland were measured, this wetland is located in the northern part of Iran. Sediment pollution levels were examined and analyzed using reliable pollution indices including Pollution Load Index (PLI), Geoaccumulation Index (Igeo) and Enrichment Factor (CF), and finally it was revealed that heavy metal pollution ranged from low to moderate loads in the wetland. According to Sediment Quality Guidelines (SQGs) and Ecological Risk Index (ERI), it was concluded that As and Ni may have significant toxic impacts on aquatic organisms and also according to Effect Range Median (ERM), the toxicity probability of sediments in the Anzali wetland was estimated at 21%.Synthesized Fe0-rGO nanocomposite with ratio of 1/1 (w/w) was prepared and has been used as adsorbent for the removal of Carbamazepine (CBZ) from aqueous solution. The adsorbent was characterized by various techniques such as Fourier-transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Field Emission Scanning Electron Microscopy (FE-SEM) analyses. Linear experiments were performed to compare the best fitting isotherms and kinetics. The Freundlich isotherm (R2>0.90) and pseudo second order kinetic (R2>0.99) fitted well the experimental data. On the basis of the Langmuir isotherm, the maximum adsorption capacity of Fe0-rGO for CBZ was up to 50 mg g-1 at 30 °C. The pH, adsorbent dose, and initial concentration of CBZ were observed to be the leading parameters that affected the removal of CBZ considering the analysis of variance (ANOVA; p0.05). Moreover, Fe0-rGO can be used to remove diclofenac (DIC) and cetirizine (CTZ) simultaneously. To sum up, the Fe0-rGO is a promising adsorbent not only for the efficient removal of CBZ but also for the reduction of coexisting drugs in aqueous solution.Ultrafiltration membranes are widely used for the treatment of papermaking wastewater. The antifouling performance of polyvinylidene fluoride (PVDF) ultrafiltration membranes can be improved by changing the hydrophilicity. Here, a novel amphiphilic copolymer material, PVDF grafted with N-isobutoxy methacrylamide (PVDF-g-IBMA), was prepared using ultraviolet-induced Cu(II)-mediated reversible deactivation radical polymerization. The amphipathic copolymer was used to prepare ultrafiltration membrane via NIPS. The prepared PVDF-g-IBMA ultrafiltration membrane was estimated using 1H NMR, FT-IR, and DSC. The contact angle, casting viscosity, and the permeation performance of the PVDF-g-IBMA ultrafiltration membrane were also determined. The pure water flux, bovine serum albumin removal rate, and pure water flux recovery rate of the PVDF-g-IBMA ultrafiltration membrane were 432.8 L·m-2·h-1, 88.4%, and 90.8%, respectively. Furthermore, for the treatment of actual papermaking wastewater, the chemical oxygen demand and turbidity removal rates of the membrane were 61.5% and 92.8%, respectively. The PVDF-g-IBMA amphiphilic copolymer ultrafiltration membrane exhibited good hydrophilicity and antifouling properties, indicating its potential for treating papermaking wastewater.Co-digestion of thermally pretreated sewage sludge with food waste is an innovative strategy that could improve the balance and availability of nutrients needed to increase the efficiency of anaerobic digestion in terms of biogas production. In this context, the aim of this research was to evaluate the impact of different proportions of sewage sludge/food waste in laboratory- and pilot-scale reactors. Special focus was placed on the impact of the variability of food waste composition on the behaviour of the pilot digester. Our results show that by adding 40% of co-substrate, a higher biogas production was possible during laboratory operation. Interestingly, using a co-substrate of variable composition had no negative impact on the reactor's stability at pilot-scale, promoting an increase in biogas production through a more efficient use of organic matter. In both the lab and pilot experiences there was an impact on the amount of nitrogen in the digestate compared to digester operating in monodigestion. This impact is more significant as the proportion of co-substrate rises. Overall, our results show that co-digestion of thermally pretreated sewage sludge with food waste allows better management of food waste, especially when their composition is variable.In order to solve the bottleneck of low methane production in anaerobic codigestion of excess sludge (ES) and plant waste (PW), a new strategy of enhancing hydrolysis and acidification by rhamnolipid (RL) was proposed under thermophilic condition. The results showed that the optimal dosage of RL was 50 g/kg total suspended solids, and the maximum yield of methane was 198.5 mL/g volatile suspended solids (VSS), which was 2.3 times of that in the control. RL promoted the dissolution of organic matter in the codigestion process of ES and PW, and the higher the dosage of RL, the higher the concentration of soluble chemical oxygen demand (SCOD) in the fermentation broth. When RL was 100 g/kg, the maximum content of SCOD in fermentation broth was 2,451 mg/L, and the contents of soluble protein and polysaccharide were 593 mg/L and 419 mg/L on 10 d, respectively, which were significantly higher than other groups. In addition, the yield of VFA in RL group was also significantly increased, and acetate and propionate were the main components of VFAs. This research work provides data support for the resource utilization of ES and PW, and expands the application field of RL.Hymenolepis nana is responsible for many parasitic infections in tropical areas, with its persistence in aquatic environments as major contributory factor. A study aimed at demonstrating the effectiveness of some disinfectants on the viability of Hymenolepis nana eggs was conducted in microcosm. Sampling consisted of taking wastewater and sewage sludge samples in sterilized containers and then transporting to the laboratory of Hydrobiology and Environmental Sciences for the determination of Hymenolepis nana eggs using standard protocols. The experimental set-up consisted of five replicates, four tests and a control. The test samples were successively treated with four disinfectants (calcium chlorite, hydrogen peroxide, gypsum and sodium hypochlorite). The physico-chemical parameters were measured before and after disinfection. The samples were then observed under an optical microscope after concentration of the sample through sedimentation and McMaster technique. The viability of the eggs was determined usingt has no known toxic effects.Colloids have a high adsorption capacity and can be mobile under preferential flow, and so may facilitate heavy metal migration. Heavy metal migration with soil colloids in a clayey soil under preferential flow conditions was investigated through experiments. Adsorption tests were carried out to determine the adsorption of Cd2+ and Pb2+ to the clay and colloids. The preferential flow characteristics in the soil column were investigated by dye tracing tests. The mobility of soil colloids in the soil column was studied by breakthrough tests. Leaching tests of cadmium and lead with and without colloids were carried out. The adsorption tests showed that soil colloids adsorbed more cadmium and lead than the silty clay. The dye tracing tests showed that moderate preferential flow in the soil column can be obtained by choosing clod-size distribution and dry density. The co-leaching test showed that the outflow of cadmium and lead was 1.49 and 33.88 times greater with colloids than without, respectively. The heavy metals adsorbed onto clay and the pore concentrations were both lower with colloids than without, indicating more heavy metals migrated downward with colloids. The migration of cadmium and lead was greatly enhanced by colloids under preferential flow conditions.Heavy metal contamination in underground water commonly occurs in industrial areas in Taiwan. Wine-processing waste sludge (WPWS) can adsorb and remove several toxic metals from aqueous solutions. In this study, WPWS particles were used to construct a permeable reactive barrier (PRB) for the remediation of a contaminant plume comprising HCrO4-, Cu2+, Zn2+, Ni2+, Cd2+, and AsO33- in a simulated aquifer. This PRB effectively prevented the dispersals of Cu2+, Zn2+, and HCrO4-, and their concentrations in the pore water behind the barrier declined below the control standard levels. However, the PRB failed to prevent the diffusion of Ni2+, Cd2+, and AsO33-, and their concentrations were occasionally higher than the control standard levels. However, 18% to 45% of As, 84% to 93% of Cd, and 16% to 77% of Ni were removed by the barrier. Ni ions showed less adsorption on the fine sand layer because of the layer's ineffectiveness in multiple competitive adsorptions. Therefore, the ions infiltrated the barrier at a high concentration, which increased the loading for the barrier blocking. The blocking efficiency was related to the degree of adsorption of heavy metals in the sand layer and the results of their competitive adsorption.Reverse osmosis concentrate (ROC) is one of the major drawbacks in membrane treatment technologies specifically due to the scale-forming ions. It is important to remove these ions from ROC to enhance total water recovery and reuse in the textile industry that is the largest water-consumer and polluter industry. In this work, coagulation/high pH precipitation (CP) integrated with ceramic microfiltration (CMF) was studied as a pre-treatment method followed by nanofiltration (NF) to increase the efficiency of water recovery. To prevent organic fouling, ferric chloride (FeCl3) was applied at a concentration of 3 mM, and ceramic membranes were used for the removal of non-precipitating crystals and/or suspended solids (at high pH) before the NF processes. The CP-CMF method successfully removed calcium (Ca2+), magnesium (Mg2+), silica (SiO2), and TOC up to 97, 83, 92, and 87% respectively, which resulted in higher performance of the NF process. Moreover, this method provided higher flux at lower pressure that ultimately increased overall water recovery of the NF process to achieve near-zero liquid discharge (n-ZLD). A cost-benefit estimation showed that a high-quality effluent (COD less then 5 mg/L; conductivity 700 less then μS/cm; negligible residual color) can be generated and recycled in the textile industry at an economical cost (approximately 0.97 USD/m3). Therefore, ROC minimization and water recovery can help to achieve n-ZLD using the CP-CMF/NF method.In this study, two-dimensional (2D) MXene material (Ti3C2Tx) was employed to investigate its potentials toward the Cr(VI) removal in aqueous system by batch experiments. Characterization techniques such as SEM-EDS, HRTEM, XRD, FI-TR and XPS were used to analyze the structure and interaction of Ti3C2Tx before and after Cr(VI) adsorption. The results indicated that the layered structure of Ti3C2Tx had unique surface functional properties and abundant active sites, such as -OH, Ti-O, C = O, which exhibited high adsorption capacity for Cr(VI) removal. The Cr(VI) adsorption capacity by Ti3C2Tx decreased with the increase of pH, and its maximum value can reach 169.8 mg/g at pH = 2.0. The adsorption kinetic was well-explained by a pseudo-second-order kinetic, indicating that chemical interaction played a dominant role in the adsorption of Cr(VI) on Ti3C2Tx. Selleckchem GW9662 Meanwhile, the isotherm data was calculated to conform to the Freundlich isotherm model. Thermodynamic analysis indicated that the adsorption process of Cr(VI) on Ti3C2Tx was a spontaneous endothermic process.

Autoři článku: Kokholmmcculloch6702 (Rossi Jochumsen)