Martinussenchappell1851

Z Iurium Wiki

Verze z 20. 9. 2024, 16:52, kterou vytvořil Martinussenchappell1851 (diskuse | příspěvky) (Založena nová stránka s textem „Quorum sensing (QS) is a bacterial cell density-based communication system using low molecular weight signals called autoinducers (AIs). Identification and…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Quorum sensing (QS) is a bacterial cell density-based communication system using low molecular weight signals called autoinducers (AIs). Identification and quantification of these molecules could provide valuable information related to the stage of colonization or infection as well as the stage of the disease. With this scenario, we report here for the first time the development of antibodies against the PQS (pseudomonas quinolone signal), the main signaling molecule from the pqs QS system of Pseudomonas aeruginosa, and the development of a microplate-based enzyme-linked immunosorbent assay (ELISA) able of quantifying this molecule in complex biological media in the low nanometer range (LOD, 0.36 ± 0.14 nM in culture broth media). Moreover, the PQS ELISA here reported has been found to be robust and reliable, providing accurate results in culture media. The technique allowed us to follow up the PQS profile of the release of bacterial clinical isolates obtained from patients of different disease status. A clear correlation was found between the PQS immunoreactivity equivalents and the chronic or acute infection conditions, which supports the reported differences on virulence and behavior of these bacterial strains due to their adaptation capability to the host environment. The results obtained point to the potential of the PQS as a biomarker of infection and to the value of the antibodies and the technology developed for improving diagnosis and management of P. aeruginosa infections based on the precise identification of the pathogen, appropriate stratification of the patients according to their disease status, and knowledge of the disease progression.Two-dimensional nanomaterials decorated by metal nanoparticles have gained great interest, due to their potential applications in different areas ranging from electrochemical sensing to photothermal therapy. However, metal nanoparticles that are noncovalently immobilized on the surface of two-dimensional nanomaterials can be dissociated from their surface in the complex mediums. Selleckchem 3-deazaneplanocin A This challenge can be overcome by covalent attachment of nanoparticles to the surface of these platforms. In this work, MoS2 sheets are decorated by silver nanoparticles (AgNPs) through a reversible addition-fragmentation chain transfer (RAFT) reaction. Reactive centers were created on the surface of freshly exfoliated MoS2 and a two-dimensional platform with the ability of initiating the RAFT reaction was obtained. Afterwards, silver nanoparticles with acrylamide functionality were synthesized and attached on the surface of MoS2 sheets by the RAFT reaction. MoS2-AgNPs hybrids were characterized by different spectroscopy and microscopy methods as well as thermal and elemental analyses, and then they were used for the electrochemical determination of dipyridamole in aqueous solution. Taking advantage of the straightforward synthesis and the possible MoS2-AgNPs distance adjustment, a variety of hybrid systems with unique physicochemical and optoelectronic properties can be constructed by using this method.Hydroxyapatite (HAP) is one of the most important inorganic components in biological minerals such as bones and teeth. More than 90% of the total citrate is accumulated in human bones and other biomineralized tissues. In addition, mineralizing proteins are enriched in glutamate and aspartate residues, which are important for their mineral-regulating properties. However, how citrate ions (CITs) and/or acidic amino acids regulate the formation of HAP is still unclear. In this work, molecular dynamics simulations were performed to study how CIT regulates the adsorption behavior of polyaspartic acid (PASP) on the HAP surface in the calcium phosphate solution. The simulation results indicate that PASP can be used as an ion chelator to complex Ca2+ and can serve as templates for HAP mineralization by templating the distribution of Ca2+ on its surface, which are attributed to the -COO- and α-helix structure. Most importantly, the orientation distributions of PASP in all systems are narrower with the help of CIT, thereby PASP can be adsorbed on the HAP surface stably with a "lying-down" orientation. This indicates that CIT can be used as a bridging agent to bond the acidic peptide to the HAP surface in biomineralization. Thus, the synergic role of CIT and the acidic peptide on the HAP surface were revealed in this work, which can provide new insights into the interfacial phenomena during the biomineralization.A nickel-promoted cascade annulation reaction for the facile synthesis of 3H-1,2,4-triazol-3-ones from readily available hydrazonoyl chlorides and sodium cyanate has been developed. The transformation occurs through a cascade nickel-promoted intermolecular nucleophilic addition-elimination process, intramolecular nucleophilic addition, and a hydrogen-transfer sequence. The method has been successfully applied for the construction of the core skeleton of the angiotensin II antagonist.The perennial problem of instability of fluorescent copper nanoclusters (Cu NCs), stemming principally from aerial oxidation, has prevented their vivid usage in energy harvesting compared to the other metal NCs. However, replacement of the much expensive metal NCs with the cheaper Cu NCs is desirable if the functions are met with. Although thiolate protection of Cu NCs could bring some stability to them, appreciably decentlystable Cu NCs were produced inside the aqueous core of reverse micelles (RMs). However, this recent development has not been further explored on the photosensitization of the Cu NCs inside the RMs and their controlled modulation as energy antenna. Here we have synthesized stable Cu NCs inside the aqueous core of RMs with three different pool sizes and established photoinduced electron transfer (PET) to an electron acceptor. Considering the bulk quencher concentration, it appears that the extent of PET increases with decrease in the size of the aqueous core of RMs. However, calculating the effective concentration of the electron acceptor inside the RMs and considering the polarity of the microheterogeneous systems, it becomes clear that the extent of PET actually decreases with decrease in the size of the aqueous pool (w0, i.e., [H2O]/[AOT]) = 5-20) in the RMs. This proof of concept and the results are promising toward applications in PET-driven phenomena such as solar cells or batteries.

Autoři článku: Martinussenchappell1851 (Hartvigsen Kragelund)