Baggebenjamin7046

Z Iurium Wiki

Verze z 20. 9. 2024, 16:43, kterou vytvořil Baggebenjamin7046 (diskuse | příspěvky) (Založena nová stránka s textem „Social interactions, through influence on behavioural processes, can play an important role in populations' resilience (i.e. ability to cope with perturbat…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Social interactions, through influence on behavioural processes, can play an important role in populations' resilience (i.e. ability to cope with perturbations). However little is known about the effects of perturbations on the strength of social cohesion in wild populations. Long-term associations between individuals may reflect the existence of social cohesion for seizing the evolutionary advantages of social living. We explore the existence of social cohesion and its dynamics under perturbations by analysing long-term social associations, in a colonial seabird, the Audouin's gull Larus audouinii, living in a site experiencing a shift to a perturbed regime. Our goals were namely (1) to uncover the occurrence of long-term social ties (i.e. associations) between individuals and (2) to examine whether the perturbation regime affected this form of social cohesion. We analysed a dataset of more than 3500 individuals from 25 years of monitoring by means of contingency tables and within the Social Network Analysis framework. We showed that associations between individuals are not only due to philopatry or random gregariousness but that there are social ties between individuals over the years. Furthermore, social cohesion decreased under the perturbation regime. We sustain that perturbations may lead not only to changes in individuals' behaviour and fitness but also to a change in populations' social cohesion. The consequences of decreasing social cohesion are still not well understood, but they can be critical for the population dynamics of social species.The CHA2DS2-VASc score is a validated predictor of ischemic stroke in atrial fibrillation (AF) patients. However, data are limited on whether the CHA2DS2-VASc score is associated with subclinical brain structural changes or physical frailty among older AF patients. We assessed the relationship between CHA2DS2-VASc scores and brain structural changes or physical frailty in AF patients without history of stroke. Overall, 117 patients completed a comprehensive geriatric assessment for physical frailty. In brain magnetic resonance imaging sub-study (n = 49), brain volume and white matter hyperintensity lesion burden were automatically quantified using the LESIONQUANT software program. Patients with high risk of CHA2DS2-VASc scores (≥ 2 in men or ≥ 3 in women) tended to be older and had more comorbidities, higher frailty index, and slower gait speed. Total white matter hyperintensity lesion burden was higher in those with high risk of CHA2DS2-VASc score than in those with intermediate risk (score of 1 in men or 2 in women) of CHA2DS2-VASc score (1.67 [interquartile range 0.70-3.45] vs. 0.64 [0.19-1.44], p = 0.036). Cognitive function was associated with brain volume, but gait speed was related with white matter hyperintensity lesion burden. In conclusion, we showed a positive relationship between CHA2DS2-VASc scores, white matter hyperintensity lesion burden, and physical frailty in older AF patients. Subclinical brain changes associated with high CHA2DS2-VASc scores may predict physical frailty risk.Plasmopara viticola is one of the most important pathogens infecting Vitis vinifera plants. The interactions among P. viticola and both susceptible and resistant grapevine plants have been extensively characterised, at transcriptomic, proteomic and metabolomic levels. However, the involvement of plants ionome in the response against the pathogen has been completely neglected so far. Therefore, this study was aimed at investigating the possible role of leaf ionomic modulation during compatible and incompatible interactions between P. viticola and grapevine plants. In susceptible cultivars, a dramatic redistribution of mineral elements has been observed, thus uncovering a possible role for mineral nutrients in the response against pathogens. On the contrary, the resistant cultivars did not present substantial rearrangement of mineral elements at leaf level, except for manganese (Mn) and iron (Fe). This might demonstrate that, resistant cultivars, albeit expressing the resistance gene, still exploit a pathogen response mechanism based on the local increase in the concentration of microelements, which are involved in the synthesis of secondary metabolites and reactive oxygen species. Moreover, these data also highlight the link between the mineral nutrition and plants' response to pathogens, further stressing that appropriate fertilization strategies can be fundamental for the expression of response mechanisms against pathogens.Structural proteins play critical roles in the food quality, especially texture properties, of sea cucumbers and their products. Most of the previous studies on sea cucumbers focused on few individual proteins, which limited our understanding of how structural proteins influenced the quality of sea cucumbers. Inspired by the clarification of sea cucumber (Apostichopus japonicus) genome, we established an integrated data of structural proteins in the sea cucumber body wall. A portfolio of 2018 structural proteins was screened out from the sea cucumber annotated proteome by bioinformatics analysis. The portfolio was divided into three divisions, including extracellular matrix proteins, muscle proteins, and proteases, and further classified into 18 categories. AZ-33 nmr The presence of 472 proteins in the sea cucumber body wall was confirmed by using a proteomics approach. Moreover, comparative proteomics analysis revealed the spatial distribution heterogeneity of structural proteins in the sea cucumber body wall at a molecular scale. This study suggested that future researches on sea cucumbers could be performed from an integrated perspective, which would reshape the component map of sea cucumber and provide novel insights into the understanding of how the food quality of sea cucumber was determined on a molecular level.Alveolar epithelial type II (AETII) cells are important for lung epithelium maintenance and function. We demonstrate that AETII cells from mouse lungs exposed to cigarette smoke (CS) increase the levels of the mitochondria-encoded non-coding RNA, mito-RNA-805, generated by the control region of the mitochondrial genome. The protective effects of mito-ncR-805 are associated with positive regulation of mitochondrial energy metabolism, and respiration. Levels of mito-ncR-805 do not relate to steady-state transcription or replication of the mitochondrial genome. Instead, CS-exposure causes the redistribution of mito-ncR-805 from mitochondria to the nucleus, which correlated with the increased expression of nuclear-encoded genes involved in mitochondrial function. These studies reveal an unrecognized mitochondria stress associated retrograde signaling, and put forward the idea that mito-ncRNA-805 represents a subtype of small non coding RNAs that are regulated in a tissue- or cell-type specific manner to protect cells under physiological stress.

Autoři článku: Baggebenjamin7046 (Dowling Hassing)