Jamisonanderson3602

Z Iurium Wiki

Verze z 20. 9. 2024, 16:18, kterou vytvořil Jamisonanderson3602 (diskuse | příspěvky) (Založena nová stránka s textem „It is necessary to establish sampling protocols or standards that are specific to each plastic formation and start reporting the occurrence of these new pl…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

It is necessary to establish sampling protocols or standards that are specific to each plastic formation and start reporting the occurrence of these new plastic categories as such to avoid underestimating plastic pollution in marine environments. It is suggested that monitoring plans include these categories and identify potential sources. Further research must focus on investigating whether the suspected impacts are a matter of concern. In this sense, we have suggested research questions to address the knowledge gaps and have a better understanding of the impacts and distribution of the new plastic forms.Poly- and per-fluoroalkyl substances (PFAS) are an emerging class of anthropogenic contaminants whose occurrence has raised concerns with the beneficial reuse of biosolids from wastewater treatment. This study evaluated the behavior of thirteen PFAS in nine Canadian sludge treatment systems including pelletization, alkaline stabilization, aerobic and anaerobic digestion processes. The composition of the overall PFAS-fluorine (ΣPFAS-F) loading in a system fed with only primary sludge was dominated by perfluorodecanoate (PFDA), whereas systems with blended primary and waste activated sludge feeds had a mix of short and long chain PFAS in raw sludges and treated biosolids. An increase in average ΣPFAS-F mass flow was observed through pelletization (19% formation) and alkaline stabilization (99% formation) processes indicating negative removal or contaminant formation. One of the two aerobic digestion systems and three of the five anaerobic digestion systems showed modest reductions ( 75% formation) to modest removal (42% removal) in the surveyed systems while short chain perfluoropentanoate (PFPeA) mass flows increased through the three systems where they occurred. Overall, the contaminant mass balances revealed that there were significant changes in mass flows of the target PFAS through all kinds of sludge treatment systems. The results of this study on PFAS fate through sludge processing can inform future global PFAS risk management activities as well as sludge treatment considerations.The presence of copper in aquatic environment is a serious threat for human health and ecosystem conservation. Adsorption is a powerful, operable and economic method for remediation of copper ions from aqueous phase. Carbohydrate biopolymers have emerged as promising, effective and environmental-friendly adsorbents for copper remediation. In part A of this review, different types of carbohydrate biopolymer adsorbents were surveyed focusing on prevalent and novel synthesis and modification methods. In current work (part B of the review), isothermal, thermodynamic and kinetic aspects of the copper adsorption by carbohydrate-based adsorbents as well as the regeneration and reusability of the biopolymer adsorbents are overviewed. Adsorption capacity, time required for equilibrium (adsorption rate), thermal-sensitivity of the adsorption, favorability extent, and sustainability of the adsorbents and adsorption processes are valuable and useful outcomes, resulted from the thermokinetic and reusability investigations. Such considerations are critical for the process design and scale up regarding technical, economical and sustainability of the adsorption process.The magnitude of nitrogen (N) and phosphorus (P) exported from agricultural fields via subsurface tile drainage systems is determined by site-specific interactions between weather, soil, field, and management characteristics. Here, we used multiple regression analyses to evaluate the influence of 29 controls of precipitation event-driven discharge, nitrate (NO3--N) load, and dissolved reactive P (DRP) load from subsurface tile drains, leveraging a unique dataset of ~7000 precipitation events observed across 40 agricultural fields (n = 190 site years) instrumented to collect continuous water quality samples. We calculated marginal effects of significant controls and assessed the modifying influence of event rainfall, duration, and intensity, and antecedent precipitation. Tile discharge was strongly and positively influenced by previous 7-day precipitation and total rainfall and negatively influenced by daily temperature and tile spacing. Both tile NO3--N and DRP loads were positively influenced by transport and source variables, including event discharge and total fertilizer applied as well as soil test P (STP) in the case of tile DRP load; factors with the strongest negative influence on tile NO3--N and DRP loads were related to time of year. selleckchem The strength and direction of both positive and negative controls also varied with precipitation characteristics. For example, the positive influence of event discharge on nutrient loads lessened as event duration, event intensity, and previous 7-day precipitation increased, while the positive influence of N and P sources strengthened, particularly in response to extreme (or maximum) events. Results here demonstrate the predominant role of transport and source controls while accounting for interactive effects among site-specific characteristics and underscore the importance of storm dynamics when managing N and P loss from agricultural fields.Colloid-facilitated transport can be important for preferential transfer of phosphorus (P) through the soil profile to groundwater and may in part explain elevated P concentrations in surface water during baseflow and particularly high flow conditions. To investigate the potential for colloidal P (Pcoll) mobilisation in soils, this study assessed the role of soil chemical properties and P fertilizer type on medium-sized soil Pcoll (200-450 nm) and its association with soil solution soluble bioavailable P ( less then 450 nm). Hillslope soils from three agricultural catchments were sampled and untreated and treated (cattle slurry and synthetic fertilizer) subsamples were incubated. Soil supernatants were analysed for P and soil Water Dispersible Colloids (WDC) were extracted for analysis of P and P-binding materials. Soils physicochemical properties including degree of P saturation (DPS) and P sorption properties were determined. Results indicated that medium-sized Pcoll was mostly unreactive P associated to some extent to amorphous forms of Fe.

Autoři článku: Jamisonanderson3602 (Qvist McGee)