Lambpruitt7865
Transient storage model (TSM) is the most popular model for simulating solutes transport in natural streams. Accurate estimate of TSM parameters is essential in many hydraulic and environmental problems. In this study, an improved version of high-level Moth-Swarm Algorithm (IMSA) was used to predict the TSM parameters. First, the performance of the improved model was successfully assessed through several benchmark functions. Next, a series of 58 measured hydraulic and geometric datasets was used to validate the model. The data were divided into two series randomly, 38 datasets were selected for derivation and the remaining 20 datasets were used to verification. Then the results of IMSA were compared with other algorithms proposed by previous researchers. Two statistical indices of root mean square error (RMSE) and coefficient of correlation (CC) were employed to evaluate the performance of the model. The results showed that despite the high complexity and uncertainty associated with the dispersion processes, the IMSA algorithm could accurately predict the TSM parameters. Organ carbon are often used to enhance denitrification in wastewater treatment. However, their possible effects on microbial interactions are very limited. In this work, an anaerobic ammonium oxidation (anammox) coupled with sulfur autotrophic/mixotrophic denitrification (SAD/SMD) system was used to investigate the changes in microbial interactions among the microbial communities under different nutrient condition. The removal efficiency of total nitrogen increased from 70% (SAD) to 97% (SMD). The Illumina sequencing analysis indicated that Planctomycetes was the most dominant bacterial phylum in anammox system. Thiobacillus and Sulfurimonas, two typical autotrophic denitrifiers, decreased significantly from 31.9% to 17.7%-12.2% and 9.3%, when the nutrient condition changed from SAD to SMD (P less then 0.05). Meanwhile, some heterotrophic or mixotrophic denitrifying bacteria, including Gemmobacter, Pseudomonas and Thauera increased significantly (P less then 0.05). Molecular ecological network (MEN) analysis showed that the addition of organic carbon substantially altered the overall architecture of the network. Compared with SAD, the SMD had shorter path lengths, indicating higher transfer efficiencies of information and materials among different microorganism. The addition of organic carbon increased the microbial interaction complexity of Proteobacteria. The links of Thiobacillus, which was a typical sulfur-oxidizing autotrophic denitrifying bacteria, significantly reduced (P less then 0.05) with the addition of organic carbon, while the links of the heterotrophic bacteria Geobacter significantly increased (P less then 0.05). This study provided new insights into our understanding of the shifts in the bacteria community and their microbial interactions under different nutrient conditions (SAD and SMD) in sulfur-supported denitrification system. Goethite is a common iron hydroxide, which can be substituted by manganese (Mn) in the goethite structure. It is important to investigate the immobilization of uranium(VI) on Mn-substituted goethite (Mn-Goe) to understand the fate and migration of uranium in soils and sediments. In this study, the sorption of uranium(VI) by Mn-Goe was investigated as a function of pH, adsorbent dosage, contact time, and initial uranium concentration in batch experiments. Several material analysis techniques were used to characterize manganese substituted materials. Results indicated that Mn was successfully introduced into the goethite structure, the length of particles increased gradually, the surface clearly exhibited higher roughness with increasing Mn content, and that uranium(VI) sorption of synthetic Mn-Goe appeared to be higher than that of goethite. The sorption kinetics supported the results presented by the pseudo-second-order model. selleck inhibitor The sorption capacity of uranium on Mn-Goe was circa 77 mg g-1 at pH = 4.0 and 25 °C. Fourier transform-infrared spectroscopy (FT-IR) analyses revealed that uranium ions were adsorbed through functional groups containing oxygen on the Mn-Goe structure. The enhancement of Mn-substitution for the uranium(VI) sorption capacity of goethite was revealed. This study suggests that goethite and Mn-Goe can both play a significant role in controlling the mobility and transport of uranium(VI) in the subsurface environment, which is helpful for material development in environmental remediation. The first decade of event-related potential (ERP) research had established that the most consistent correlates of the onset of visual consciousness are the early visual awareness negativity (VAN), a posterior negative component in the N2 time range, and the late positivity (LP), an anterior positive component in the P3 time range. Two earlier extensive reviews ten years ago had concluded that VAN is the earliest and most reliable correlate of visual phenomenal consciousness, whereas LP probably reflects later processes associated with reflective/access consciousness. This article provides an update to those earlier reviews. ERP and MEG studies that have appeared since 2010 and directly compared ERPs between aware and unaware conditions are reviewed, and important new developments in the field are discussed. The result corroborates VAN as the earliest and most consistent signature of visual phenomenal consciousness, and casts further doubt on LP as an ERP correlate of phenomenal consciousness. Nanofiltration (NF) and reverse osmosis (RO) technology have gained worldwide acceptance for reclamation of municipal wastewater due to their excellent efficiencies in rejecting a wide spectrum of organic pollutants, bacteria, dissolved organic matters and inorganic salts. However, the application of NF/RO process produces inevitably a large volume of concentrated waste stream (NF/RO concentrate), which is generally characterised by high levels of inorganic and organic substances, a low biodegradation and potential ecotoxicity. At present, one of the most significant concerns for this process is regarding the sustainable management of municipal NF/RO concentrate, due to a potentially serious threat to water receiving body. It should therefore be further disposed or treated by effective technologies such as ozonation in a cost-effective way, aiming to minimize the potential environmental risk associated with the presence of emerging micropollutants (ng L-1 - μg L-1). This paper provides an overview on the disposal of NF/RO concentrate from municipal wastewater by ozonation process. This is a first review to present entirely ozonation efficiency of NF/RO concentrate in terms of elimination of emerging micropollutants, degradation of organic matters, as well as toxicity assessment. In addition, ozone combining biological activated carbon (BAC) or other advanced oxidation processes (AOPs) is also discussed, aiming to further improve mineralization of ozone-recalcitrant substances in NF/RO concentrate. Finally, further research directions regarding the management of NF/RO concentrate are proposed. The molecular mechanisms underlying the 'seed and soil' theory are unknown. S100A8/A9 (a heterodimer complex of S100A8 and S100A9 proteins that exhibits a 'soil signal') is a ligand for Toll-like receptor 4, causing distant melanoma cells to approach the lung as a 'seeding' site. Unknown soil sensors for S100A8/A9 may exist, e.g., extracellular matrix metalloproteinase inducer, neuroplastin, activated leukocyte cell adhesion molecule, and melanoma cell adhesion molecule. We call these receptor proteins 'novel S100 soil sensor receptors (novel SSSRs).' Here we review and summarize a crucial role of the S100A8/A9-novel SSSRs' axis in cancer metastasis. The binding of S100A8/A9 to individual SSSRs is important in cancer metastasis via upregulations of the epithelial-mesenchymal transition, cellular motility, and cancer cell invasiveness, plus the formation of an inflammatory immune suppressive environment in metastatic organ(s). These metastatic cellular events are caused by the SSSR-featured signal transductions we identified that provide cancer cells a driving force for metastasis. To deprive cancer cells of these metastatic forces, we developed novel biologics that prevent the interaction of S100A8/A9 with SSSRs, followed by the efficient suppression of S100A8/A9-mediated lung-tropic metastasis in vivo. Electrospun polyacrylonitrile fiber membranes (EPFMs) were coated with multilayer films, assembled using the layer-by-layer (LbL) technique through the alternate deposition of poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA), to develop an antithrombogenic drug release membrane for hemodialysis. Methylene blue (MB) and heparin (HEP) were attached to the PAH and PAA multilayers, respectively, as model drug and antithrombogenic agent to investigate the dual functionality of the membranes. The positively (PAH, MB) and negatively (PAA, HEP) charged groups generated a supermolecular polyelectrolyte multilayer film (SPF) capable of loading high amounts of MB and HEP on the EPFMs at appropriate composition. The pH was fixed at 5.5 during assembly to stabilize the SPF. Heavy assembly of the PAH/PAA multilayer occurred at 10 wt% of both MB and HEP with 25 cycles of LbL deposition, and it exhibited long-term release of MB and low release of HEP at pH 7.4 in a circulatory system. The SPF-coated EPFMs also achieved low platelet attachment after 4 h of platelet rich plasma circulation and showed prolonged clotting times including thromboplastin, thrombin, and prothrombin times. Collectively, these observations suggest that SPF-coated EPFMs have great potential for use as hemodialysis membranes with positively charged drug loading. Owing to the excellent biocompatibility, hyperbranched polyglycerols (hbPGs) are one of the most promising polymers and widely employed in drug delivery. Presented as an excellent bioinert coating material, hbPGs can significantly improve the biosafety of biomedical nanomaterials. However, it is still unclear what specific properties of hbPGs are the key effectors to bioinertness. Here, atomic force microscopy was employed to test the Young's modulus and adhesion of hbPGs, spin-coated onto mica substrate. High Young's modulus indicated that the hbPGs cannot be further compressed and low adhesion implied that it is not easy to form hbPGs aggregators. This could owe to the intramolecular hydrogen bond. Morphology characterization of hbPGs self-assembled monolayer onto Si(100) substrate, confirmed the lower adhesion among different hbPGs and indicated their biofouling properties. Further confocal laser microscopy of cell membrane modified with alkyl chain (C18)-modified hbPGs and hbPGs-NH2, confirmed that the antifouling properties of hbPGs are determined by terminal glycerol units. Our findings demonstrated that only hbPGs with entire terminal surface can be used as perspective cell membrane modification skeleton. INTRODUCTION The study tested the psychometric properties of two Chinese version Internet Gaming Disorder scales (IGDSs) a dichotomous IGDS with yes/no type of response and a polytomous IGDS with a 0-5 Likert-type response. METHODS The reliability and validity of two scales were tested separately, among two population-based samples of Chinese adolescents and adults (351 for dichotomous IGDS and 378 for polytomous IGDS). The diagnostic accuracy of the dichotomous IGDS was assessed in an independent sample of 114 gamers (56 disordered gamers and 58 average gamers) using Receiver Operating Characteristic (ROC) analysis. RESULTS The results demonstrated good internal consistency (αdichotomous = 0.80 and αpolytomous = 0.89) and test-retest reliability (rdichotomous = 0.83 and rpolytomous = 0.84) for both scales. Both scales showed sound validity, as indicated by significant correlations with measurements of internet addiction, aggression, impulsivity, craving for gaming and time spent playing games. Factor analysis demonstrated that both Chinese IGDSs have a similar single-component structure to the original scales.