Walthernoble6429
Correlation between antibody-mediated rejection (ABMR) and circulating HLA donor-specific antibodies (HLA-DSA) is strong but imperfect in kidney transplant (KT) recipients, raising the possibility of undetected HLA-DSA or non-HLA antibodies contributing to ABMR. Detailed evaluation of the degree of HLA matching together with the identification of non-HLA antibodies in KT may help to decipher the antibody involved.
We retrospectively assessed patients with transplant biopsies scored following Banff'15 classification. Pre- and post-transplant serum samples were checked for HLA and non-HLA antibodies [MICA-Ab, angiotensin-II type-1-receptor (AT
R)-Ab, endothelin-1 type-A-receptor (ETAR)-Ab and crossmatches with primary aortic endothelial cells (EC-XM)]. We also analyzed HLA epitope mismatches (HLA-EM) between donors and recipients to explore their role in ABMR histology (ABMR
) with and without HLA-DSA.
One-hundred eighteen patients with normal histology (n = 19), ABMR
(n = 52) or IFTA (n = 47) were stA
compared with ABMR
DSA
, suggesting factors other than HLA are responsible for the damage.
In conclusion, pre-transplant AT1R-Ab is frequently found in ABMRhDSApos patients. However, AT1R-Ab, MICA-Ab, ETAR-Ab or EC-XM+ are rarely found among ABMRhDSAneg patients. Pre-transplant AT1R-Ab may act synergistically with preformed or de novo HLA-DSA to produce ABMRhDSApos but not ABMRhDSAneg. HLA epitope mismatch associates with ABMRhDSApos compared with ABMRhDSAneg, suggesting factors other than HLA are responsible for the damage.The global antimicrobial resistance crisis poses a significant threat to humankind in the coming decades. Challenges associated with the development of novel antibiotics underscore the urgent need to develop alternative treatment strategies to combat bacterial infections. Host-directed therapy is a promising new therapeutic strategy that aims to boost the host immune response to bacteria rather than target the pathogen itself, thereby circumventing the development of antibiotic resistance. However, host-directed therapy depends on the identification of druggable host targets or proteins with key functions in antibacterial defense. Protein Kinase R (PKR) is a well-characterized human kinase with established roles in cancer, metabolic disorders, neurodegeneration, and antiviral defense. However, its role in antibacterial defense has been surprisingly underappreciated. Although the canonical role of PKR is to inhibit protein translation during viral infection, this kinase senses and responds to multiple types of cellular stress by regulating cell-signaling pathways involved in inflammation, cell death, and autophagy - mechanisms that are all critical for a protective host response against bacterial pathogens. Indeed, there is accumulating evidence to demonstrate that PKR contributes significantly to the immune response to a variety of bacterial pathogens. Importantly, there are existing pharmacological modulators of PKR that are well-tolerated in animals, indicating that PKR is a feasible target for host-directed therapy. In this review, we provide an overview of immune cell functions regulated by PKR and summarize the current knowledge on the role and functions of PKR in bacterial infections. We also review the non-canonical activators of PKR and speculate on the potential mechanisms that trigger activation of PKR during bacterial infection. Finally, we provide an overview of existing pharmacological modulators of PKR that could be explored as novel treatment strategies for bacterial infections.
We explored the combined effects of sarcopenia (SAR) and radiotherapy (RT) on outcomes in patients with advanced gastric cancer (AGC) treated with immune-checkpoint blockade (ICB).
Among 185 patients with AGC treated with ICB, we defined SAR as skeletal muscle index <49 cm2/m2 for men and <31 cm2/m2 for women; 93 patients met criteria. We defined high neutrophil-to-lymphocyte ratio (hNLR) as NLR≥3. Palliative RT was performed in 37 patients (20%) before ICB.
We frequently observed hNLR in patients with SAR (53%
35%, p = 0.02). The median overall survival (OS) for the entire cohort was 5 months. Stratification by risk factors of SAR or hNLR revealed a significant difference in median OS (0 [N = 60]
1 [N = 76]
2 [N = 49] 7.6
6.4
2.2 months, p < 0.001). Patients with microsatellite instability-high (MSI-H, N = 19) or Epstein-Barr virus (EBV)-positive tumors (N = 13) showed favorable outcomes compared to those with microsatellite stable (MSS, N = 142) tumors (median OS, not reached
16.8
3.8 months, respectively). The benefit of RT was evident in patients with both SAR and hNLR (median OS, 3.1
1.3 months, p = 0.02) and MSS/EBV-negative tumor (median OS, 6.5
3.5 months, p = 0.03), but outcomes after RT in MSI-H tumor were not significantly different. In multivariable analysis, SAR/hNLR, molecular subtypes, and a history of RT were associated with OS (all p < 0.05).
We demonstrated the negative predictive value of SAR/hNLR on outcomes after ICB for AGC, and the history of RT could overcome the negative impact of SAR/hNLR and the MSS/EBV-negative subtype.
We demonstrated the negative predictive value of SAR/hNLR on outcomes after ICB for AGC, and the history of RT could overcome the negative impact of SAR/hNLR and the MSS/EBV-negative subtype.
Lacrimal gland secretory dysfunction in Sjögren syndrome (SS) causes ocular surface desiccation that is associated with increased cytokine expression and number of antigen-presenting cells (APCs) in the conjunctiva. This study evaluated the hypothesis that desiccating stress (DS) alters the percentage and gene expression of myeloid cell populations in the conjunctiva.
DS was induced by pharmacologic suppression of tear secretion and exposure to drafty low humidity environment. Bone marrow chimeras and adoptive transfer of CD45.1
bone marrow cells to CD45.2
C-C chemokine receptor 2 knockout (CCR2
) mice were used to track DS-induced myeloid cell recruitment to the conjunctiva. Flow cytometry evaluated myeloid cell populations in conjunctivae obtained from non-stressed eyes and those exposed to DS for 5 days. CD11b
myeloid lineage cells were gated on monocyte (Ly6C), macrophage (CD64, MHCII) and DC (CD11c, MHCII) lineage markers. NanoString immune arrays were performed on sorted MHCII
and MHCII
msicca.The identification of asymptomatic, non-severe presymptomatic, and severe presymptomatic coronavirus disease 2019 (COVID-19) in patients may help optimize risk-stratified clinical management and improve prognosis. This single-center case series from Wuhan Huoshenshan Hospital, China, included 2,980 patients with COVID-19 who were hospitalized between February 4, 2020 and April 10, 2020. Patients were diagnosed as asymptomatic (n = 39), presymptomatic (n = 34), and symptomatic (n = 2,907) upon admission. This study provided an overview of asymptomatic, presymptomatic, and symptomatic COVID-19 patients, including detection, demographics, clinical characteristics, and outcomes. Upon admission, there was no significant difference in clinical symptoms and CT image between asymptomatic and presymptomatic patients for diagnosis reference. The mean area under the receiver operating characteristic curve (AUC) of the differential diagnosis model to discriminate presymptomatic patients from asymptomatic patients was 0.89 (95% CI, 0.81-0.98). Importantly, the severe and non-severe presymptomatic patients can be further stratified (AUC = 0.82). In conclusion, the two-step risk-stratification model based on 10 laboratory indicators can distinguish among asymptomatic, severe presymptomatic, and non-severe presymptomatic COVID-19 patients on admission. Moreover, single-cell data analyses revealed that the CD8+T cell exhaustion correlated to the progression of COVID-19.
SCN4 is an autosomal recessive disease caused by mutations in the
gene. The clinical, molecular, and immunological features; function of neutrophils; and prognosis of patients with SCN4 have not been fully elucidated.
Two Chinese pediatric patients with
mutations were enrolled in this study. Clinical data, genetic and immunologic characteristics, and neutrophil function were evaluated in patients and controls before and after granulocyte colony-stimulating factor (G-CSF) treatment.
Both patients had histories of pneumonia, inguinal hernia, cryptorchidism, and recurrent oral ulcers. Patient 1 also had asthma and otitis media, and patient 2 presented with prominent ectatic superficial veins and inflammatory bowel disease. DNA sequencing demonstrated that both patients harbored heterozygous
gene mutations. Spontaneous and FAS-induced neutrophil apoptosis were significantly increased in patients, and improved only slightly after G-CSF treatment, while neutrophil respiratory burst and neutrophil extracellular traps production remained impaired in patients after G-CSF treatment.
G-CSF treatment is insufficient for patients with SCN4 patients, who remain at risk of infection. ARN-509 cost Where possible, regular G-CSF treatment, long-term prevention of infection, are the optimal methods for cure of SCN4 patients. It is important to monitor closely for signs of leukemia in SCN4 patients. Once leukemia occurs in SCN4 patients, hematopoietic stem cell transplantation is the most important choice of treatment.
G-CSF treatment is insufficient for patients with SCN4 patients, who remain at risk of infection. Where possible, regular G-CSF treatment, long-term prevention of infection, are the optimal methods for cure of SCN4 patients. It is important to monitor closely for signs of leukemia in SCN4 patients. Once leukemia occurs in SCN4 patients, hematopoietic stem cell transplantation is the most important choice of treatment.Type 1 diabetes (T1D) is an autoimmune disorder with unambiguous involvement of both innate and adaptive immune mechanisms in the destruction of pancreatic beta cells. Recent evidence demonstrated that neutrophils infiltrate the pancreas prior to disease onset and therein extrude neutrophil extracellular traps (NETs), web-like structures of DNA and nuclear proteins with a strong pro-inflammatory biologic activity. Our previous work showed that T1D NETs activate dendritic cells, which consequently induce IFNγ-producing Th1 lymphocytes. The aim of this study was to assess direct ex vivo biomarkers of NETosis in the serum of recent onset and long-term pediatric T1D patients, their first-degree relatives and healthy controls. To this end we evaluated serum levels of myeloperoxidase (MPO), neutrophil elastase (NE), proteinase 3 (PR3), protein arginine deiminase 4 (PAD4), LL37 and cell-free DNA-histone complexes in sex- and age-matched cohorts of T1D first-degree relatives, recent-onset T1D patients, and in patients 12 months after clinical manifestation of the disease. Our data shows that disease onset is accompanied by peripheral neutrophilia and significant elevation of MPO, NE, PR3, PAD4 and cell-free DNA-histone complexes. Most biomarkers subsequently decrease but do not always normalize in long-term patients. First-degree relatives displayed an intermediate phenotype, except for remarkably high levels of LL37. Together, this report provides evidence for the presence of ongoing NETosis in pediatric patients with T1D at time of clinical manifestation of the disease, which partly subsides in subsequent years.