Henningsenlinde9692

Z Iurium Wiki

Verze z 20. 9. 2024, 12:46, kterou vytvořil Henningsenlinde9692 (diskuse | příspěvky) (Založena nová stránka s textem „CRISPR-Cas9 genome editing technology is widely used in scientific research and biotechnology. As this technology becomes a staple tool in life sciences re…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

CRISPR-Cas9 genome editing technology is widely used in scientific research and biotechnology. As this technology becomes a staple tool in life sciences research, it is increasingly important to incorporate it into biology curricula to train future scientists. To demonstrate the molecular underpinnings and some limitations of CRISPR-based gene editing, we designed a laboratory module to accompany a discussion-based course on genome editing for college and advanced high school biology students. The laboratory module uses CRISPR-Cas9 to target and inactivate the ADE2 gene in Saccharomyces cerevisiae so as to give red colonies, employing an inexpensive yeast model system with a phenotypic readout that is easily detectable without specialized equipment. Students begin by accessing the yeast ADE2 sequence in a genome database, applying their understanding of Cas9 activity to design guide RNA (gRNA) sequences, using a CRISPR analysis tool to compare predicted on- and off-target effects of various gRNAs, and presenting and explaining their choice of an optimal gRNA to disrupt the ADE2 gene. They then conduct yeast transformations using Cas9 and preselected gRNA plasmids with or without donor templates to explore the importance of DNA repair pathways in genome editing. Lastly, they analyze the observed editing rates across different gRNAs targeting ADE2, leading to a discussion of editing efficiency. This module engages students in experimental design, provides hands-on experience with CRISPR-Cas9 gene editing and collaborative data analysis, and stimulates discussion on the uses and limitations of CRISPR-based gene editing technology.Challenges in integration of concepts persist among undergraduate biology students. The 5 core concepts (5CCs) of biology presented in Vision and Change provide a comprehensive, concept-based description of the knowledge of biology, summarized in five main biological scales and five overarching principles that dictate natural biological phenomena and processes. The goal of this study was to collect information on students' interpretations of three introductory biology topics, (i) aquaporins, (ii) aerobic respiration, and (iii) DNA transcription, while associating their knowledge of these topics with the 5CCs. During three separate exam review sessions, students of a conventional lecture-based introductory biology class were asked to provide short responses of how each of the 5CCs related to the given class topic. An inductive coding analysis of student responses was performed to reveal the main connections students made between each of the three topics and the 5CCs. Mycophenolatemofetil We found that for some core concepts it was easier for students to draw connections to a simple topic, such as aquaporins, while for other core concepts it was easier to draw connections to a multistep phenomenon, such as aerobic respiration. Although student connections were simple associations between a CC and a class topic, exploratory studies such as this one can be an important step toward designing teaching practices that are aligned with Vision and Change recommendations and could advance student conceptual understanding and integration of biological knowledge.Discussion can be an important and powerful tool in efforts to build a more diverse, equitable, and inclusive future for STEM (i.e., science, technology, engineering, and mathematics). However, facilitating discussions on difficult, complex, and often uncomfortable issues, like racism and sexism, can feel daunting. We outline a series of steps that can be used by educators to facilitate productive discussions that empower everyone to listen, contribute, learn, and ultimately act to transform STEM.We previously developed and assessed "The Art of Microbiology," a course-based undergraduate research experience (CURE) which uses agar art to spur student experimentation, where we found student outcomes related to science persistence. However, these outcomes were not correlated with specific activities and gains were not reported from more than one class. In this study, we explored which of the three major activities in this CURE-agar art, experimental design, or poster presentations-affected student engagement and outcomes associated with improved understanding of the nature of science (NOS). The Art of Microbiology was studied in three microbiology teaching laboratories at a research university with either the CURE developer (18 students) or a CURE implementer (39 students) and at a community college with a CURE implementer (25 students). Our quasi-experimental mixed methods study used pre/post-NOS surveys and semi-structured class-wide interviews. Community college students had lower baseline NOS responses but had gains in NOS similar to research university students post-CURE. We surveyed research university students following each major activity using the Assessing Student Perspective of Engagement in Class Tool (ASPECT) survey but did not find a correlation between NOS and activity engagement. Of the three activities, we found the highest engagement with agar art, especially in the CURE developer class. Interviewed students in all classes described agar art as a fun, relevant, and low-stakes assignment. This work contributes to the evidence supporting agar art as a curricular tool, especially in ways that can add research to classrooms in and beyond the research university.The demonstrated gap between skills needed and skills learned within a college education places both undergraduates seeking gainful employment and the employers seeking highly skilled workers at a disadvantage. Recent and up-and-coming college graduates should possess 21st century skills (i.e., communication, collaboration, problem solving), skills that employers deem necessary for the workplace. Research shows that the development of this skillset can help narrow the gap in producing highly skilled graduates for the science, technology, engineering, and mathematics (STEM) workforce. We propose the development of 21st century skills by utilizing the project-based learning (PjBL) framework and creating the inclusive biologist exploring active research with students (iBEARS) program, allowing undergraduate students to hone their 21st century skills and prepare for transition and success within the workplace.Quantitative PCR (qPCR) has numerous applications in biology. In an educational setting, qPCR provides students an opportunity to better understand the PCR mechanism by providing both quantitative information about the reactions and also data to troubleshoot PCRs (e.g., melt curves). Here, we present a relatively short (2-h) laboratory activity to demonstrate qPCR to quantify plasmid copy number (CN) by measuring the cycle threshold (CT ) values for a genomic gene and a plasmid gene using transformed cells as a template. The activity can be combined with additional laboratory exercises, including bacterial transformation, to create the template to be used in the qPCRs. This lab activity is ideal for undergraduate laboratory courses that include recombinant DNA technology. (This work was presented at the 2020 Biomedical Engineering Society annual meeting).Gene-editing tools such as CRISPR-Cas9 have created unprecedented opportunities for genetic studies in plants and animals. We designed a course-based undergraduate research experience (CURE) to train introductory biology students in the concepts and implementation of gene-editing technology as well as develop their soft skills in data management and scientific communication. We present two versions of the course that can be implemented with twice-weekly meetings over a 5-week period. In the remote-learning version, students performed homology searches, designed guide RNAs (gRNAs) and primers, and learned the principles of molecular cloning. This version is appropriate when access to laboratory equipment or in-person instruction is limited, such as during closures that have occurred in response to the COVID-19 pandemic. In person, students designed gRNAs, cloned CRISPR-Cas9 constructs, and performed genetic transformation of Arabidopsis thaliana. Students learned how to design effective gRNA pairs targeting their assigned gene with an 86% success rate. Final exams tested students' ability to apply knowledge of an unfamiliar genome database to characterize gene structure and to properly design gRNAs. Average final exam scores of ∼73% and ∼84% for in-person and remote-learning CUREs, respectively, indicated that students met learning outcomes. The highly parallel nature of the CURE makes it possible to target dozens to hundreds of genes, depending on the number of sections. Applying this approach in a sensitized mutant background enables focused reverse genetic screens for genetic suppressors or enhancers. The course can be adapted readily to other organisms or projects that employ gene editing.Students' ability to accurately judge their knowledge is crucial for effective learning. However, students' perception of their current knowledge is often misaligned with their actual performance. The relationship between learners' perception of their performance and their actual performance on a task is defined as calibration. Previous studies have shown significant student miscalibration in an introductory biology course students' predicted exam scores were, on average, significantly higher than their actual scores. The goal of this study was to determine whether completion of a practice test before exams would result in better performance and calibration. The hypothesis was that students who completed a practice test would perform better and be better predictors of their performance on exams than students who did not engage in practice testing. As predicted, students who voluntarily completed a practice test, on average, performed better and were more calibrated than students who did not. Importantly, however, many of the lowest-performing students continued to significantly overestimate their knowledge, predicting higher scores on the exam than they actually earned, despite feedback from practice tests. In contrast, practice testing was associated with underconfidence in high-performing students. These findings indicate that practice tests may enhance calibration for many students. However, additional interventions may be required for the lowest-performing students to become better predictors of their performance.Calls for early exposure of all undergraduates to research have led to the increased use and study of course-based research experiences (CREs). CREs have been shown to increase measures of persistence in the sciences, such as science identity, scientific self-efficacy, project ownership, scientific community values, and networking. However, implementing CREs can be challenging and resource-intensive. These barriers may be partly mitigated by the use of short-term CRE modules rather than semester- or year-long projects. One study has shown that a CRE module captures some of the known benefits of CREs as measured by the Persistence in the Sciences (PITS) survey. Here, we used this same survey to assess outcomes for introductory biology students who completed a semester of modular CREs based on faculty research at an R1 university. The results indicated levels of self-efficacy, science community values, and science identity similar to those previously reported for students in the Science Education Alliance-Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) full-semester CRE.

Autoři článku: Henningsenlinde9692 (Proctor Mcgee)