Bojevincent6083
The aim of this in vitro study was to evaluate the effect of bleaching protocols on the surface roughness (Ra), color change and surface micromorphology of a low-viscosity bulk-fill composite (Filtek Bulk Fill Flow, 3M ESPE), a highviscosity bulk-fill composite (Filtek Bulk Fill, 3M ESPE) and a conventional nanoparticulate composite resin (control) (Filtek Z350 XT, 3M ESPE). Forty samples of each composite (disks 5 mm in diameter and 2 mm thick) were randomly divided into four groups (n=10), according to bleaching protocol a) 10% carbamide peroxide gel (Opalescence, Ultradent Products) (2 h/ day, for 14 days); b) 40% hydrogen peroxide gel (Opalescence Boost, Ultradent Products) (three bleaching sessions, once a week, 45 min/session); c) whitening rinse (Listerine Whitening Extreme, Johnson & Johnson) (2 min/day, for 14 days); and d) distilled water (control). The samples were submitted to triplicate readings (Ra and color [CIELAB parameters]) before and after contact with bleaching protocols. Micromorphology was analyzed in a scanning electron microscope (SEM). Ra and color parameters (ΔL, Δa, Δb and ΔE) were analyzed by generalized linear models (α=0.05). The Ra of the high-viscosity bulk-fill was significantly higher than that of the other composites (p less then 0.05). Ra increased significantly (p less then 0.05) and surface became more irregular (SEM analysis) in all the composite resins, regardless of the bleaching protocol (p less then 0.05). The high-viscosity bulk-fill composite resin group had significantly lower ΔE (p less then 0.05) than the nanoparticulate composite resin group immersed in distilled water. It was concluded that the characteristics of each resin significantly influenced the Ra more than the bleaching protocol. The high-viscosity bulk-fill resin presented minor color change.
Previous studies in piglets show a direct relationship between intestinal mass and arginine (Arg) synthesis. We aimed to study the effects of 75% intestinal resection on whole-body Arg synthesis.
Piglets were allocated to sham or jejunocolic (JC) surgery and to enteral nutrition (EN) at 20% [sham (n = 8), JC (n = 10)], or 40% [sham (n = 4), JC (n = 5)]. A gastric tube was placed for EN and a venous catheter for parenteral nutrition and blood sampling. selleck On day 6, a primed bolus and constant infusion of Arg m + 2 label and proline m + 1 label was delivered. In addition, 40% EN piglets received a citrulline (Cit) m + 3 tracer. Blood sampling was undertaken and whole-body Arg synthesis was calculated. On day 7, intestinal length was measured, and samples were collected for gene expression (PCR quantification) and histopathology.
On Day 7, sham piglets showed intestinal lengthening compared to JC (p = 0.02). Whole-body Arg synthesis was similar between groups (p = 0.50). Adjusting for absolute small intestinal arginine synthesis in a neonatal piglet model of short bowel syndrome and demonstrated adaptive changes in the intestine that may preserve whole-body arginine synthesis, despite loss of intestinal mass. This research adds new information to our understanding of the effects a massive intestinal resection has on amino acid metabolism during neonatal development.
Very preterm (VP) children are at risk of memory and emotional impairments; however, the neural correlates remain incompletely defined. This study investigated the effect of VP birth on white matter tracts traditionally related to episodic memory and emotion.
The cingulum, fornix, uncinate fasciculus, medial forebrain bundle and anterior thalamic radiation were reconstructed using tractography in 144 VP children and 33 full-term controls at age 7 years.
Compared with controls, VP children had higher axial, radial, and mean diffusivities and neurite orientation dispersion, andlower volume and neurite density in the fornix, along with higher neurite orientation dispersion in the medial forebrain bundle. Support vector classification models based on tract measures significantly classified VP children and controls. Higher fractional anisotropy and lower diffusivities in the cingulum, uncinate fasciculus, medial forebrain bundle and anterior thalamic radiation were associated with better episodic memory, ind and emotional outcomes of individual children based on support vector regression was limited.
We studied white matter fibre tracts thought to be involved in episodic memory and emotion in VP and full-term children using diffusion magnetic resonance imaging and machine learning. VP children have altered fornix and medial forebrain bundle structure compared with full-term children. Altered tract structure can be detected using machine learning, which accurately classified VP and full-term children using tract data. Altered cingulum, uncinate fasciculus, medial forebrain bundle and anterior thalamic radiation structure was associated with poorer episodic memory skills using linear regression. The ability of tract structure to predict episodic memory and emotional outcomes of individual children based on support vector regression was limited.Necrotizing enterocolitis (NEC) is a devastating condition affecting up to 5% of neonatal intensive care unit (NICU) admissions. Risk factors include preterm delivery, low birth weight, and antibiotic use. The pathogenesis is characterized by a combination of intestinal ischemia, necrosis of the bowel, reperfusion injury, and sepsis typically resulting in surgical resection of afflicted bowel. Targeted medical therapy remains elusive. Chondroitin sulfate (CS) holds the potential to prevent the onset of NEC through its anti-inflammatory properties and protective effect on the gut microbiome. The purpose of this review is to outline the many properties of CS to highlight its potential use in high-risk infants and attenuate the severity of NEC. The purpose of this review is to (1) discuss the interaction of CS with the infant microbiome, (2) review the anti-inflammatory properties of CS, and (3) postulate on the potential role of CS in preventing NEC. IMPACT NEC is a costly medical burden in the United States. Breast milk is the best preventative measure for NEC, but not all infants in the NICU have access to breast milk.