Therkelsenhaslund1446
Phylogenetic analysis of selected 37 complete genome sequences of WMV isolates also supported the above major grouping. Recombination analysis in the CP genes confirmed various recombinant events, indicating that purifying selection and recombination are the two dominant forces for the evolution of WMV isolates in the U.S.Begomoviruses can be found in association with alphasatellites, which are capable of autonomous replication but are dependent on the helper begomovirus for systemic infection, encapsidation and vector transmission. Previous studies suggest that the presence of NW alphasatellites (genus Clecrusatellite) is associated with more severe symptoms. To better understand this interaction, we investigated the effects of two alphasatellites on infectivity, symptom development, viral DNA accumulation and vector transmission of three begomoviruses in three hosts. In tomato and Nicotiana benthamiana, all combinations were infectious. In Leonurus sibiricus, only the ToYSV/ToYSA combination was infectious. The presence of EuYMA increased symptom severity of EuYMV and ToYSV in N. benthamiana, and the presence of ToYSA was associated with more severe symptoms of ToYSV in N. benthamiana and L. sibiricus. EuYMA increased the accumulation of ToYSV in N. benthamiana but reduced the accumulation of EuYMV in tomato and of ToSRV in N. benthamiana. The presence of ToYSA decreased the accumulation of ToYSV in N. benthamiana and L. sibiricus. ToYSA negatively affected transmission of ToSRV by Bemisia tabaci MEAM1. Together, our results indicate that NW alphasatellites can interact with different begomoviruses, increasing symptom severity and interfering in the transmission of the helper begomovirus. Understanding this interaction is important as it may affect the emergence of diseases caused by begomovirus-alphasatellite complexes in the field.A new species, Colletotrichum menglaense, isolated from air in Mengla, Xishuangbanna, Yunnan Province, China, was characterized and described combining morphological characteristics and multigene phylogenetic analysis. Morphologically, it is characterized by oblong, sometimes slightly constricted, micro-guttulate conidia and simple obovoid to ellipsoidal appressoria. Phylogenetic analysis of the ITS, ACT, CHS, and GAPDH sequences showed that C. menglaense belongs to the C. gloeosporioides complex. The pathogenicity of C. menglaense on fruits of several crop plants, including strawberry, orange, grape, tomato, and blueberry, was tested and confirmed by the re-isolation of C. menglaense.Endophytic fungi (EF) can enhance both plant growth and defense barriers against pests and pathogens, contributing to the reduction of chemical pesticides and fertilizers use in agriculture. Beauveria bassiana is an entomopathogenic fungus showing endophytism in several crops, often associated with a good capacity to limit the development of pests and disease agents. However, the diversity of the protective efficacy and plant response to different strains can be remarkable and needs to be carefully assessed for the successful and predictable use of these beneficial microorganisms. This study aims to select B. bassiana strains able to colonize tomato plants as endophytes as well as to control two important disease agents, Botrytis cinerea and Alternaria alternata, and the pest aphid, Macrosiphum euphorbiae. Nine wild-type isolates and one commercial strain were screened for endophytism, then further characterized for plant-growth promotion plus inhibition of disease development and pest infestation. Four isolates proved to have a good control activity against the biotic stressors tested, but only Bb716 was also able to promote plant growth. This work provides a simple workflow for the selection of beneficial EF, paving the way towards more effective use of B. bassiana in Integrate Pest Management (IPM) of tomato.Apicomplexan genomes encode multiple pepsin-family aspartyl proteases (APs) that phylogenetically cluster to six independent clades (A to F). Such diversification has been powered by the function-driven evolution of the ancestral apicomplexan AP gene and is associated with the adaptation of various apicomplexan species to different strategies of host infection and transmission through various invertebrate vectors. To estimate the potential roles of Babesia APs, we performed qRT-PCR-based expressional profiling of Babesia microti APs (BmASP2, 3, 5, 6), which revealed the dynamically changing mRNA levels and indicated the specific roles of individual BmASP isoenzymes throughout the life cycle of this parasite. To expand on the current knowledge on piroplasmid APs, we searched the EuPathDB and NCBI GenBank databases to identify and phylogenetically analyse the complete sets of APs encoded by the genomes of selected Babesia and Theileria species. Our results clearly determine the potential roles of identified APs by their phylogenetic relation to their homologues of known function-Plasmodium falciparum plasmepsins (PfPM I-X) and Toxoplasmagondii aspartyl proteases (TgASP1-7). Due to the analogies with plasmodial plasmepsins, piroplasmid APs represent valuable enzymatic targets that are druggable by small molecule inhibitors-candidate molecules for the yet-missing specific therapy for babesiosis.Salmonella is one of the major causes of foodborne disease outbreaks globally. learn more Specifically, Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) is one of the major causes of zoonotic Salmonella infection in humans worldwide. In this study, we present data on antimicrobial resistance (AMR) and plasmid profiles of S. Enteritidis strains isolated from patients, food, and the environment in Siberia and the Far East of Russia obtained during Salmonella monitoring between 1990 and 2017. A total of 345 S. Enteritidis isolates were tested by the disk diffusion method with a set of 15 antibiotics using EUCAST breakpoints v. 10 and by plasmid profile analysis using the alkaline lysis method. The results have shown a substantial decrease in susceptibility to aminoglycosides and quinolones during the study period. No significant differences were found in the susceptibility of strains between regions as well as in the its correlation with different plasmid types of the pathogen. Several S. Enteritidis strains were found to be resistant to ampicillin, kanamycin, tetracycline, chloramphenicol, and cephalosporins. All tested S. Enteritidis strains were susceptible only to imipenem. In this study, we observed a relatively low level of AMR in S. Enteritidis strains isolated in Siberia and the Far East of Russia. Nevertheless, it is important to continue the molecular genetic monitoring and AMR surveillance of S. Enteritidis to track further increases in AMR using conventional phenotypic susceptibility testing and by introducing whole-genome sequencing to identify AMR mechanisms.The inflammatory response in pediatric sepsis is highly dynamic and includes both pro- and anti-inflammatory elements that involve the innate and adaptive immune systems. While the pro-inflammatory response is responsible for the initial clinical signs and symptoms of sepsis, a concurrent compensatory anti-inflammatory response often results in an occult, but highly clinically relevant, form of acquired immunodeficiency. When severe, this is termed "immunoparalysis" and is associated with increased risks for nosocomial infection, prolonged organ dysfunction, and death. This review focuses on the pathophysiology and clinical implications of both over- and under-active immune function in septic children. Host-, disease-, and treatment-specific risk factors for immunoparalysis are reviewed along with immune phenotype-specific approaches for immunomodulation in pediatric sepsis which are currently the subject of clinical trials.This research aimed to assess the pharmacokinetics/pharmacodynamics (PK/PD) and tissue residues of spiramycin in chickens. The PK of spiramycin were determined in 12 chickens using a parallel study design in which each group of chickens (n = 6) received a single dose of spiramycin at 17 mg/kg intravenously (IV) or orally. Plasma samples were collected at assigned times for up to 48 h to measure spiramycin concentrations. Additionally, a tissue depletion study was performed in 42 chickens receiving spiramycin at 17 mg/kg/day orally for 7 days. The area under the plasma concentration-time curve values were 29.94 ± 4.74 and 23.11 ± 1.83 µg*h/mL after IV and oral administrations, respectively. The oral bioavailability was 77.18%. The computed withdrawal periods of spiramycin were 11, 10, and 7 days for liver, muscle, and skin and fat, respectively. The minimum inhibitory concentration for spiramycin against Mycoplasma synoviae (M. synoviae) strain 1853 was 0.0625 µg/mL. Using the PK/PD integration, the appropriate oral dose of spiramycin against M. synoviae was estimated to be 15.6 mg/kg. Thus, we recommend an oral dose of 15.6 mg spiramycin/kg against M. synoviae in chickens and a withdrawal period of 11 days following oral treatment with 17 mg spiramycin/kg/day for 7 days.Feline coronavirus (FCoV) is endemic in cat populations worldwide. Persistently, subclinically infected cats play a significant role in spreading the infection. Testing fecal samples of cats may facilitate efforts to decrease the viral burden within a population. Real-time RT-PCR is highly sensitive and specific for the detection of FCoV but must be performed in a fully equipped laboratory. A simple and accurate assay is needed to identify FCoV at the point-of-need. The aim of this study was to develop a rapid FCoV detection assay based on isothermal amplification technology, i.e., reverse transcription-recombinase polymerase amplification (RT-RPA). Primers were designed to target the highly conserved 3' untranslated region of the 7b gene. Running on a constant temperature of 42 °C, reverse transcription as well as DNA amplification and detection was achieved in a maximum of 15 min. A probit analysis revealed a detection limit of 58.5 RNA copies/reaction. For cross-detection, nucleic acids from 19 viruses were tested. Both RT-RPA and real-time RT-PCR showed cross-detection with canine coronavirus and transmissible gastroenteritis virus, but not with other pathogens. To evaluate clinical performance, RNA was extracted from 39 fecal samples from cats. All samples were tested simultaneously with real-time RT-PCR resulting in a RT-RPA sensitivity and specificity of 90.9% and 100%, respectively. RT-RPA can be considered a promising simple method for rapid detection of FCoV.Lungworms in the genus Angiostrongylus cause disease in animals and humans. The spread of Angiostrongylus vasorum within Europe and the recent establishment of Angiostrongylus cantonensis increase the relevance of these species to veterinary and medical practitioners, and to researchers in parasitology, epidemiology, veterinary science and ecology. This review introduces the key members of the genus present in Europe and their impacts on health, and updates the current epidemiological situation. Expansion of A. vasorum from localized pockets to wide distribution across the continent has been confirmed by a rising prevalence in foxes and increasing reports of infection and disease in dogs, while the list of carnivore and mustelid definitive hosts continues to grow. The tropically distributed rat lungworm A. cantonensis, meanwhile, has been recorded on islands south of Europe, previously the Canary Islands, and now also the Balearic Islands, although so far with limited evidence of zoonotic disease. Other members of the genus, namely, A.