Floydfox3040

Z Iurium Wiki

Verze z 19. 9. 2024, 18:17, kterou vytvořil Floydfox3040 (diskuse | příspěvky) (Založena nová stránka s textem „Though the F-GFA and G-GFA showcased higher water absorption ratio than the natural sand due to the presence of unreacted fly ash and GGBS particles, the c…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Though the F-GFA and G-GFA showcased higher water absorption ratio than the natural sand due to the presence of unreacted fly ash and GGBS particles, the complete replacement of fine aggregate with geopolymerized sand initiated the adequate compressive strength attainment up to 90% of natural sand, by reacting with the lime expelled out of the hydration process of cement in the mortar specimens developed in this experimental study. The geopolymer itself is hydrophilic in nature, and it will also aid for the higher water absorption ratio of the polymer sand. The microstructure of the samples was further examined through optical microscope, scanning electron microscope, and X-ray diffraction analysis in order to corroborate the experimental results of this study. The results thus obtained strongly recommend the potential of the F-GFA and G-GFA as an ideal replacement material for natural sand.Harmful cyanobacterial blooms (HCB) have severe impacts on marine and freshwater systems worldwide. Rucaparib research buy They cause oxygen depletion and produce potent cyanotoxins that have detrimental effects on human and environmental health and deteriorate the water quality. Biological treatment of the water for control of cyanobacterial blooms and removal of cyanotoxins can be a more economical and environment-friendly way, as they do not result in production of undesirable by-products. Most biological treatments of cyanobacteria and cyanotoxins have concentrated largely on bacteria, with little attention paid to algicidal fungi. Therefore, this review aims to provide an overview of the current status and the main progresses achieved in fungal biodegradation of HCB and cyanotoxin research. The available data revealed that 15 fungal species had high lytic activity against cyanobacteria, and 6 species were capable of degrading microcystins (MCs). Some fungal species (e.g., Aurobasidium pullulans and Trichoderma citrinoviride) have been identified to selectively inhibit the growth of cyanobacteria rather than beneficial species of other algal groups. Interestingly, some fungal strains (Trichaptum abietinum, Trichoderma citrinoviride) exhibited di-functional trait, being efficient in lysing cyanobacteria and degrading MCs released from the cells after decay. Beyond a comprehensive review of algicidal and toxin-degrading activities of fungi, this paper also identifies and prioritizes research gaps in algicidal fungi. The review also gives insights to the potential applications of algicidal fungi for removal of cyanobacterial blooms and their cyanotoxins from the aquatic environment.Glioblastoma is one of the deadliest forms of primary adult tumors, with median survival of 14.6 months post-diagnosis despite aggressive standard of care treatment. This grim prognosis for glioblastoma patients has changed little in the past two decades, necessitating novel treatment modalities. One potential treatment modality is cancer immunotherapy, which has shown remarkable progress in slowing disease progression or even potentially curing certain solid tumors. However, the transport barriers posed by the blood-brain barrier and the immune privileged status of the central nervous system pose drug delivery obstacles that are unique to brain tumors. In this review, we provide an overview of the various physiological, immunological, and drug delivery barriers that must be overcome for effective glioblastoma treatment. We discuss chemical modification strategies to enable nanomedicines to bypass the blood-brain barrier and reach intracranial tumors. Finally, we highlight recent advances in biomaterial-based strategies for cancer immunotherapy that can be adapted to glioblastoma treatment.Behçet's disease (BD) is a systemic autoinflammatory vasculitis. It occurs predominantly in Turkey but very rarely in Europe. The clinical manifestations of BD involve the skin and mucosal membranes; cardiovascular, gastrointestinal and nervous systems; and the eyes and joints. A 26-year-old man was repeatedly hospitalized at the Department of Dermatology of the Medical University of Bialystok. He had a family history of family members' deaths from unknown cause and a long personal history of recurring headaches and nonspecific pain in the chest as well as a 2-year history of recurring painful erosions on the oral mucosa. Recently, before admission to hospital, another erosion had appeared on the scrotum, which rapidly evolved into a painful ulceration. The patient also presented a large erosion in the area of the right hip and acne lesions. He consulted doctors of different specialties and underwent laboratory and imaging tests. Considering the symptoms, BD was diagnosed. Azathioprine was introduced, along with topical treatment. Great improvement of the skin lesions was achieved. He was later admitted to the department a few times for follow-up visits and remains in good general condition. BD is an extremely rare disease in Europe, especially in Poland. The fact that BD is a rare disease outside Asia leads to lower awareness and the possibility of not considering it in the differential diagnosis. The great diversity of symptoms also causes difficulties in tracking this disease. The various manifestations of BD require a broad spectrum of additional tests and an interdisciplinary approach to the patient.In vivo flow cytometry (IVFC) was first designed to detect circulating cells in a mouse ear. It allows real-time monitoring of cells in peripheral blood with no need to draw blood. The IVFC field has made great progress during the last decade with the development of fluorescence, photoacoustic, and multiphoton microscopy. Moreover, the application of IVFC is no longer restricted to circulating cells. IVFC based on fluorescence and photoacoustic are most widely applied in biomedical research. Methods based on fluorescence are often used for object monitoring in superficial vessels, while methods based on photoacoustics have an advantage of label-free monitoring in deep vessels. In this chapter, we introduce technical points and key applications of IVFC. We focus on the principles, labeling strategies, sensitivity, and biomedical applications of the technology. In addition, we summarize this chapter and discuss important research directions of IVFC in the future.Cell-matrix interactions play an important role in regulating a variety of essential processes in multicellular organisms, and are closely associated with numerous diseases. Modified interactions have major effects upon key features of both cells and extracellular matrix (ECM), and a thorough understanding of changes in these features can lead to critically important insights of diseases as well as the identification of effective therapeutic targets. Here, we summarize recent advances in quantitative, optical imaging of cellular metabolism and ECM spatial organization using endogenous sources of contrast. Specifically, we focus on the two-photon excited fluorescence (TPEF) imaging of autofluorescent cellular coenzymes, NAD(P)H and FAD, for the extraction of metabolic information described by optical biomarkers including cellular redox state, NAD(P)H fluorescence lifetime, and mitochondrial clustering. We show representative applications in assessing adipose tissue function and detecting malignant lesions in human skin, and further demonstrate that a combination of these optical metrics can provide complementary insights into the underlying biological mechanisms. In addition, we review the development of quantitative analysis methods to extract spatial orientation and organization metrics of collagen fibers, a major ECM component, and demonstrate applications of these approaches in two and three dimensions in several diseases, including would healing, osteoarthritis and cancer, as well as assessments of matrix remodeling in hormone-regulated engineered breast tissues. Finally, we summarize this chapter and discuss important research directions that we expect will evolve in the near future.Tissue optical clearing technique provides a prospective solution for the application of advanced optical methods in life sciences. This chapter firstly gives a brief introduction to mechanisms of tissue optical clearing techniques, from the physical mechanism to chemical mechanism, which is the most important foundation to develop tissue optical clearing methods. During the past years, in vitro and in vivo tissue optical clearing methods were developed. In vitro tissue optical clearing techniques, including the solvent-based clearing methods and the hydrophilic reagents-based clearing methods, combined with labeling technique and advanced microscopy, can be applied to image 3D microstructure of tissue blocks or whole organs such as brain and spinal cord with high resolution. In vivo skin or skull optical clearing, promise various optical imaging techniques to detect cutaneous or cortical cell and vascular structure and function without surgical window.Optical coherence tomography (OCT) is a depth-resolved imaging modality, which is able to achieve micrometer-scale resolution within biological tissue noninvasively. In the past 30 years, researchers all around the world had made several essential efforts on techniques relevant to OCT. OCT has become a routine process for eye diseases with different types. In this chapter, the three important stages in the development of OCT are briefly illustrated, including the time domain OCT (TD-OCT), the frequency domain OCT (FD-OCT) and the optical coherence tomography angiography (OCTA). Each of the technique has made great progress for use on living human eye imaging in clinical applications. TD-OCT was first proposed and commercialized, which is able to achieve acceptable 2D depth-resolved cross-sectional images of human retina in vivo. FD-OCT was the upgraded OCT technique compared with TD-OCT. By capturing the coherent signal within the Fourier space, the FD-OCT could improve the image sensitivity compared with TD-OCT, and achieve dozens of kilo hertz imaging speed. OCTA is the newest developments of OCT technique, which is able to visualize the micro vasculature networks of human retina in vivo. With OCTA technique, the newest ophthalmologic OCT system is able to achieve detailed diagnosis for both micro-structure and vasculature abnormalities for clinical applications. The further development of OCT technique on imaging speed, contrast, resolution, field of view, and so on will make OCT to be a more powerful tool for clinical usages.Raman spectroscopy is a specific, noninvasive and nondestructive optical technique and is able to obtain chemical information from molecules. Optical imaging based on Raman spectroscopy has been a powerful technique for monitoring minute chemical changes of biological samples and generating images through direct or indirect strategies. Two widely applied Raman imaging techniques include spontaneous Raman and surface-enhanced Raman scattering (SERS) imaging. In this chapter, we introduce the basic principles including the physics behind Raman and SERS imaging, design of Raman/SERS labels or probes, and current strategies for further improvements. The progress in the use of spontaneous Raman and SERS spectroscopy for bioimaging is discussed, either in fundamental studies or in biomedical theranostics. In addition, we give insights into the challenges and opportunities for improving Raman imaging performance.

Autoři článku: Floydfox3040 (Emerson Meier)