Maddoxbendtsen3133

Z Iurium Wiki

Verze z 19. 9. 2024, 16:06, kterou vytvořil Maddoxbendtsen3133 (diskuse | příspěvky) (Založena nová stránka s textem „Whole genome sequencing (WGS) of 104 specimens revealed multiple distinct SARS-CoV-2 lineages, suggesting several nearly simultaneous introductions. Most s…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Whole genome sequencing (WGS) of 104 specimens revealed multiple distinct SARS-CoV-2 lineages, suggesting several nearly simultaneous introductions. Most specimens (66; 63.5%) were B.1.1.222, a lineage not widely detected in Chicago before or after this outbreak. These results demonstrate the potential for COVID-19 outbreaks on university campuses after widespread student travel during breaks, at the beginning of new school terms, and when students participate in indoor social gatherings. To prevent SARS-CoV-2 transmission, colleges and universities should encourage COVID-19 vaccination; discourage unvaccinated students from travel, including during university breaks; implement serial COVID-19 screening among unvaccinated persons after university breaks; encourage masking; and implement universal serial testing for students based on community transmission levels.Colleges and universities in the United States have relied on various measures during the COVID-19 pandemic to prevent transmission of SARS-CoV-2, the virus that causes COVID-19, including implementing testing programs (1-3). These programs have permitted a safer return to campus for students by identifying infected persons and temporarily isolating them from the campus population (2,3). The University of Texas at Austin (UT Austin) implemented COVID-19 prevention measures in Fall 2020* including the following testing programs clinic-based diagnostic testing, voluntary community screening, and targeted screening (testing of specific student populations in situations of increased transmission risk). During September 30-November 30, 2020, UT Austin students participated in tests for SARS-CoV-2, which resulted in the detection of 401 unique student cases of COVID-19 from among 32,401 tests conducted.† Among students who participated in one targeted screening program for students attending campus events, 18 (37.5therwise be reached.Harmful algal and cyanobacterial blooms (harmful algal blooms) are large colonies of algae or cyanobacteria that can harm humans, animals, and the environment (1-3). The number of algal blooms has been increasing in the United States, augmented by increasing water temperatures and nutrients in water from industry and agricultural run-off (4,5). The extent to which harmful algal bloom exposures cause human illness or long-term health effects is unknown. As the number of blooms increases annually, the likelihood of negative health outcomes (e.g., respiratory or gastrointestinal illness) from exposure also increases (4,5). To explore the utility of syndromic surveillance data for studying health effects from harmful algal bloom exposures, CDC queried emergency department (ED) visit data from the National Syndromic Surveillance Program (NSSP) for harmful algal bloom exposure-associated administrative discharge diagnosis codes and chief complaint text terms related to harmful algal bloom exposure (6). A total of 321 harmful algal bloom-associated ED visits were identified during January 1, 2017-December 31, 2019. An increase in harmful algal bloom-associated ED visits occurred during warmer months (June-October), consistent with seasonal fluctuations of blooms and recent publications (6,7). Although syndromic surveillance data are helpful for understanding harmful algal bloom-associated ED visits in the United States, exposures were documented infrequently with discharge diagnosis codes; 67% of harmful algal bloom-associated ED visits were identified through querying chief complaint text. Improving the documentation of harmful algal bloom exposures in medical records would further benefit future health studies.Viral infections are a common cause of myocarditis, an inflammation of the heart muscle (myocardium) that can result in hospitalization, heart failure, and sudden death (1). Emerging data suggest an association between COVID-19 and myocarditis (2-5). CDC assessed this association using a large, U.S. hospital-based administrative database of health care encounters from >900 hospitals. Myocarditis inpatient encounters were 42.3% higher in 2020 than in 2019. During March 2020-January 2021, the period that coincided with the COVID-19 pandemic, the risk for myocarditis was 0.146% among patients diagnosed with COVID-19 during an inpatient or hospital-based outpatient encounter and 0.009% among patients who were not diagnosed with COVID-19. After adjusting for patient and hospital characteristics, patients with COVID-19 during March 2020-January 2021 had, on average, 15.7 times the risk for myocarditis compared with those without COVID-19 (95% confidence interval [CI] = 14.1-17.2); by age, risk ratios ranged from approximately 7.0 for patients aged 16-39 years to >30.0 for patients aged less then 16 years or ≥75 years. Overall, myocarditis was uncommon among persons with and without COVID-19; however, COVID-19 was significantly associated with an increased risk for myocarditis, with risk varying by age group. These findings underscore the importance of implementing evidence-based COVID-19 prevention strategies, including vaccination, to reduce the public health impact of COVID-19 and its associated complications.On May 25, 2021, the Marin County Department of Public Health (MCPH) was notified by an elementary school that on May 23, an unvaccinated teacher had reported receiving a positive test result for SARS-CoV-2, the virus that causes COVID-19. The teacher reported becoming symptomatic on May 19, but continued to work for 2 days before receiving a test on May 21. On occasion during this time, the teacher read aloud unmasked to the class despite school requirements to mask while indoors. Beginning May 23, additional cases of COVID-19 were reported among other staff members, students, parents, and siblings connected to the school. To characterize the outbreak, on May 26, MCPH initiated case investigation and contact tracing that included whole genome sequencing (WGS) of available specimens. A total of 27 cases were identified, including that of the teacher. During May 23-26, among the teacher's 24 students, 22 students, all ineligible for vaccination because of age, received testing for SARS-CoV-2; 12 received positor eligible persons, strict adherence to nonpharmaceutical prevention strategies, including masking, routine testing, facility ventilation, and staying home when symptomatic, are important to ensure safe in-person learning in schools (3).The Advisory Committee on Immunization Practices (ACIP) recommends that adolescents aged 11-12 years routinely receive tetanus, diphtheria, and acellular pertussis (Tdap); meningococcal conjugate (MenACWY); and human papillomavirus (HPV) vaccines. Catch-up vaccination is recommended for hepatitis B (HepB); hepatitis A (HepA); measles, mumps, and rubella (MMR); and varicella (VAR) vaccines for adolescents whose childhood vaccinations are not current. Adolescents are also recommended to receive a booster dose of MenACWY vaccine at age 16 years, and shared clinical decision-making is recommended for the serogroup B meningococcal vaccine (MenB) for persons aged 16-23 years (1). To estimate coverage with recommended vaccines, CDC analyzed data from the 2020 National Immunization Survey-Teen (NIS-Teen) for 20,163 adolescents aged 13-17 years.* Coverage with ≥1 dose of HPV vaccine increased from 71.5% in 2019 to 75.1% in 2020. The percentage of adolescents who were up to date† with HPV vaccination (HPV UTD) increaseincluded in the survey were aged ≥13 years, past the age when most routine adolescent vaccines are recommended, and most vaccinations occurred before March 2020. Continued efforts to reach adolescents whose routine medical care has been affected by the COVID-19 pandemic are necessary to protect persons and communities from vaccine-preventable diseases and outbreaks.On June 30, 2021, the Illinois Department of Public Health (IDPH) contacted CDC concerning COVID-19 outbreaks at two events sponsored by the same organization a 5-day overnight church camp for persons aged 14-18 years and a 2-day men's conference. Neither COVID-19 vaccination nor COVID-19 testing was required before either event. As of August 13, a total of 180 confirmed and probable cases had been identified among attendees at the two events and their close contacts. Among the 122 cases associated with the camp or the conference (primary cases), 18 were in persons who were fully vaccinated, with 38 close contacts. p-Hydroxy-cinnamic Acid Eight of these 38 close contacts subsequently became infected with SARS-CoV-2, the virus that causes COVID-19 (secondary cases); among the eight close contacts with secondary cases, one half (four) were fully vaccinated. Among the 180 total persons with outbreak-associated cases, five (2.8%) were hospitalized; no deaths occurred. None of the vaccinated persons with cases were hospitalized. Approximately 1,000 persons across at least four states were exposed to SARS-CoV-2 through attendance at these events or through close contact with a person who had a primary case. This investigation underscores the impact of secondary SARS-CoV-2 transmission during large events, such as camps and conferences, when COVID-19 prevention strategies are not implemented. In Los Angeles County, California, during July 2021, when the SARS-CoV-2 B.1.617.2 (Delta) variant was predominant, unvaccinated residents were five times more likely to be infected and 29 times more likely to be hospitalized from infection than were vaccinated residents (1). Implementation of multiple prevention strategies, including vaccination and nonpharmaceutical interventions such as masking, physical distancing, and screening testing, are critical to preventing SARS-CoV-2 transmission and serious complications from COVID-19.Although severe COVID-19 illness and hospitalization are more common among adults, these outcomes can occur in adolescents (1). Nearly one third of adolescents aged 12-17 years hospitalized with COVID-19 during March 2020-April 2021 required intensive care, and 5% of those hospitalized required endotracheal intubation and mechanical ventilation (2). On December 11, 2020, the Food and Drug Administration (FDA) issued Emergency Use Authorization (EUA) of the Pfizer-BioNTech COVID-19 vaccine for adolescents aged 16-17 years; on May 10, 2021, the EUA was expanded to include adolescents aged 12-15 years; and on August 23, 2021, FDA granted approval of the vaccine for persons aged ≥16 years. To assess progress in adolescent COVID-19 vaccination in the United States, CDC assessed coverage with ≥1 dose* and completion of the 2-dose vaccination series† among adolescents aged 12-17 years using vaccine administration data for 49 U.S. states (all except Idaho) and the District of Columbia (DC) during December 14, 2020-July 31, 2021. As of July 31, 2021, COVID-19 vaccination coverage among U.S. adolescents aged 12-17 years was 42.4% for ≥1 dose and 31.9% for series completion. Vaccination coverage with ≥1 dose varied by state (range = 20.2% [Mississippi] to 70.1% [Vermont]) and for series completion (range = 10.7% [Mississippi] to 60.3% [Vermont]). By age group, 36.0%, 40.9%, and 50.6% of adolescents aged 12-13, 14-15, and 16-17 years, respectively, received ≥1 dose; 25.4%, 30.5%, and 40.3%, respectively, completed the vaccine series. Improving vaccination coverage and implementing COVID-19 prevention strategies are crucial to reduce COVID-19-associated morbidity and mortality among adolescents and to facilitate safer reopening of schools for in-person learning.

Autoři článku: Maddoxbendtsen3133 (Refsgaard Damgaard)