Garrettsunesen4959

Z Iurium Wiki

Verze z 19. 9. 2024, 14:04, kterou vytvořil Garrettsunesen4959 (diskuse | příspěvky) (Založena nová stránka s textem „Arabinogalactan-proteins (AGPs) are a large, complex, and highly diverse class of heavily glycosylated proteins that belong to the family of cell wall hydr…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Arabinogalactan-proteins (AGPs) are a large, complex, and highly diverse class of heavily glycosylated proteins that belong to the family of cell wall hydroxyproline-rich glycoproteins. Approximately 90% of the molecules consist of arabinogalactan polysaccharides, which are composed of arabinose and galactose as major sugars and minor sugars such as glucuronic acid, fucose, and rhamnose. About half of the AGP family members contain a glycosylphosphatidylinositol (GPI) lipid anchor, which allows for an association with the outer leaflet of the plasma membrane. The mysterious AGP family has captivated the attention of plant biologists for several decades. This diverse family of glycoproteins is widely distributed in the plant kingdom, including many algae, where they play fundamental roles in growth and development processes. The journey of AGP biosynthesis begins with the assembly of amino acids into peptide chains of proteins. An N-terminal signal peptide directs AGPs toward the endoplasmic reticulum, where proline hydroxylation occurs and a GPI anchor may be added. GPI-anchored AGPs, as well as unanchored AGPs, are then transferred to the Golgi apparatus, where extensive glycosylation occurs by the action of a variety glycosyltransferase enzymes. Following glycosylation, AGPs are transported by secretory vesicles to the cell wall or to the extracellular face of the plasma membrane (in the case of GPI-anchored AGPs). GPI-anchored proteins can be released from the plasma membrane into the cell wall by phospholipases. In this review, we present an overview of the accumulated knowledge on AGP biosynthesis over the past three decades. Particular emphasis is placed on the glycosylation of AGPs as the sugar moiety is essential to their function. Recent genetics and genomics approaches have significantly contributed to a broader knowledge of AGP biosynthesis. However, many questions remain to be elucidated in the decades ahead.Annual ryegrass species (Lolium spp.) infest cereal crops worldwide. Ryegrass populations with multiple resistance to the acetyl coenzyme A carboxylase (ACCase) and acetolactate synthase (ALS) inhibitors are an increasing problem in several European countries. We investigated the resistance pattern and level of resistance in ryegrass populations collected in Denmark, Greece and Italy and studied the diversity of mechanisms endowing resistance, both target-site and metabolism based. All populations showed high resistance indexes (RI) to the ALS inhibitors, iodosufuron-methyl-sodium + mesosulfuron-methyl (RI from 8 to 70), whereas the responses to the two ACCase inhibitors, clodinafop-propargyl and pinoxaden, differed. The Greek and Italian populations were moderately to highly resistant to clodinafop (RI > 8) and showed low to moderate resistance to pinoxaden (RI ranged from 3 to 13) except for one Italian population. In contrast, the Danish Lolium populations showed low to moderate resistance to clodinafop (Rears that the mechanisms underlying resistance are rather complex and diversified among Lolium spp. populations from the three countries, coevolution of both target-site resistance and metabolic based herbicide resistance appears to be a common feature in Denmark and Italy. This must be considered and carefully evaluated in adopting resistance management strategies to control Lolium spp. in cereal crops.High-temperature (HT) is one of the most important environmental factors that negatively impact the yield of some soybean cytoplasmic male sterility (CMS)-based hybrid (F1) combinations. The response of soybean to HT, especially at the male organ development stage, is poorly understood. To investigate the molecular mechanisms of the response from soybean CMS-based F1 male organ to HT, a detailed transcriptomics analysis was performed during flower bud development of soybean HT-tolerant and HT-sensitive CMS-based F1 combinations (NF1 and YF1) under normal-temperature and HT conditions. Obvious HT damage was observed by subjecting YF1 with HT, such as indehiscent anthers and decreased pollen fertility, whereas the male fertility of NF1 was normal. In total, 8,784 differentially expressed genes (DEGs) were found to respond to HT stress, which were mainly associated with anther/pollen wall development, carbohydrate metabolism and sugar transport, and auxin signaling. The quantitative real-time PCR (qRT-PCR) analysis and substance content detection also revealed that HT caused male fertility defects in YF1 by altering pectin metabolism, auxin, and sugar signaling pathways. Most importantly, the sugar signaling-PIF-auxin signaling pathway may underlie the instability of male fertility in YF1 under HT. Furthermore, HT induced the expression of heat shock factor (HSF) and heat shock protein (HSP) gene families. Overexpression of GmHSFA2 in Arabidopsis can promote the expression of HT protective genes (such as HSP20) by binding to the HSE motifs in their promoters, so as to improve the HT tolerance during flowering. Our results indicated that GmHSFA2 acted as a positive regulator, conferring HT tolerance improvement in soybean CMS-based F1. GmHSFA2 may be directly involved in the activation of male fertility protection mechanism in the soybean CMS-based F1 under HT stress.Co-expression networks are a powerful tool to understand gene regulation. They have been used to identify new regulation and function of genes involved in plant development and their response to the environment. Up to now, co-expression networks have been inferred using transcriptomes generated on plants experiencing genetic or environmental perturbation, or from expression time series. We propose a new approach by showing that co-expression networks can be constructed in the absence of genetic and environmental perturbation, for plants at the same developmental stage. For this, we used transcriptomes that were generated from genetically identical individual plants that were grown under the same conditions and for the same amount of time. Twelve time points were used to cover the 24-h light/dark cycle. We used variability in gene expression between individual plants of the same time point to infer a co-expression network. NSC 309132 We show that this network is biologically relevant and use it to suggest new gene functions and to identify new targets for the transcriptional regulators GI, PIF4, and PRR5.

Autoři článku: Garrettsunesen4959 (Sykes Grantham)