Mckeelangston0996

Z Iurium Wiki

Verze z 18. 9. 2024, 22:45, kterou vytvořil Mckeelangston0996 (diskuse | příspěvky) (Založena nová stránka s textem „Molecular electronic or vibrational states can be superimposed temporarily in an extremely short laser pulse, and the superposition-state transients formed…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Molecular electronic or vibrational states can be superimposed temporarily in an extremely short laser pulse, and the superposition-state transients formed therein receive much attention, owing to the extensive interest in molecular fundamentals and the potential applications in quantum information processing. Using the crossed-beam ion velocity map imaging technique, we disentangle two distinctly different pathways leading to the forward-scattered N2 + yields in the large impact-parameter charge transfer from low-energy Ar+ to N2. Besides the ground-state (X2Σg +) N2 + produced in the energy-resonant charge transfer, a few slower N2 + ions are proposed to be in the superpositions of the X2Σg +-A2Πu and A2Πu-B2Σu + states on the basis of the accidental degeneracy or energetic closeness of the vibrational states around the X2Σg +-A2Πu and A2Πu-B2Σu + crossings in the non-Franck-Condon region. This finding potentially shows a brand-new way to prepare the superposition-state molecular ion.Extreme ultraviolet (XUV) transient absorption spectroscopy has emerged as a sensitive tool for mapping the real-time structural and electronic evolution of molecules. Here, attosecond XUV transient absorption is used to track dynamics in the A-band of methyl iodide (CH3I). Gaseous CH3I molecules are excited to the A-band by a UV pump (277 nm, ∼20 fs) and probed by attosecond XUV pulses targeting iodine I(4d) core-to-valence transitions. Owing to the excellent temporal resolution of the technique, passage through a conical intersection is mapped through spectral signatures of nonadiabatic wave packet bifurcation observed to occur at 15 ± 4 fs following UV photoexcitation. The observed XUV signatures and time dynamics are in agreement with previous simulations [H. Wang, M. Odelius, and D. Prendergast, J. Chem. Phys. 151, 124106 (2019)]. Due to the short duration of the UV pump pulse, coherent vibrational motion in the CH3I ground state along the C-I stretch mode (538 ± 7 cm-1) launched by resonant impulsive stimulated Raman scattering and dynamics in multiphoton excited states of CH3I are also detected.Geometry optimization is an important part of both computational materials and surface science because it is the path to finding ground state atomic structures and reaction pathways. These properties are used in the estimation of thermodynamic and kinetic properties of molecular and crystal structures. This process is slow at the quantum level of theory because it involves an iterative calculation of forces using quantum chemical codes such as density functional theory (DFT), which are computationally expensive and which limit the speed of the optimization algorithms. It would be highly advantageous to accelerate this process because then one could do either the same amount of work in less time or more work in the same time. In this work, we provide a neural network (NN) ensemble based active learning method to accelerate the local geometry optimization for multiple configurations simultaneously. We illustrate the acceleration on several case studies including bare metal surfaces, surfaces with adsorbates, and nudged elastic band for two reactions. In all cases, the accelerated method requires fewer DFT calculations than the standard method. In addition, we provide an Atomic Simulation Environment (ASE)-optimizer Python package to make the usage of the NN ensemble active learning for geometry optimization easier.The free energy of glasses cannot be estimated using thermodynamic integration as glasses are intrinsically not in equilibrium. We present numerical simulations showing that, in contrast, plausible free-energy estimates of a Kob-Andersen glass can be obtained using the Jarzynski relation. Using the Jarzynski relation, we also compute the chemical potential difference of the two components of this system and find that, in the glassy regime, the Jarzynski estimate matches well with the extrapolated value of the supercooled liquid. Our findings are of broader interest as they show that the Jarzynski method can be used under conditions where the thermodynamic integration approach, which is normally more accurate, breaks down completely. Systems where such an approach might be useful are gels and jammed glassy structures formed by compression.Machine learning (ML) methods are being used in almost every conceivable area of electronic structure theory and molecular simulation. In particular, ML has become firmly established in the construction of high-dimensional interatomic potentials. Not a day goes by without another proof of principle being published on how ML methods can represent and predict quantum mechanical properties-be they observable, such as molecular polarizabilities, or not, such as atomic charges. As ML is becoming pervasive in electronic structure theory and molecular simulation, we provide an overview of how atomistic computational modeling is being transformed by the incorporation of ML approaches. From the perspective of the practitioner in the field, we assess how common workflows to predict structure, dynamics, and spectroscopy are affected by ML. Finally, we discuss how a tighter and lasting integration of ML methods with computational chemistry and materials science can be achieved and what it will mean for research practice, software development, and postgraduate training.Allowing triplet components of individual geminals, spin-contaminated strongly orthogonal geminal wave functions may emerge, which can be ameliorated by spin-projection techniques. Of the latter, half-projection was previously shown to be useful, offering a compromise between the amount of remaining spin-contamination and the violation of size consistency generated by projection. This paper investigates how a half-projected spin-contaminated geminal wave function can be improved by multi-configuration perturbation theory to incorporate dynamical correlation effects.We report that the aqueous dispersions of negatively charged submicron-sized colloidal Au particles formed non-close-packed colloidal crystals by the addition of a like-charged linear polyelectrolyte, sodium polyacrylate (NaPAA). Au particles often form irregular aggregates in dispersions because of a strong van der Waals force acting between them. To prevent aggregation, we introduced negative electric charges on particle surfaces. By the addition of NaPAA, colloidal crystals were formed on the bottom of a sample cell because of the supply of Au particles by sedimentation and 2D diffusion even under very dilute conditions. Interparticle potential calculations demonstrated that the addition of NaPAA caused depletion attraction between the particles as well as a significant reduction in the interparticle repulsion because of the electrostatic screening effect. However, the electrostatic repulsion was strong enough to prevent the direct contact of particles in the excluded region between Au particles. Large-area crystals could be obtained by tilting the sample cell. By drying the sample, the Au particles came into contact and the non-space-filling crystals changed into closest packed crystals. These closest packed crystals exhibited a significant enhancement of Raman scattering intensity because of high hot-spot density.Proton Field-Cycling (FC) nuclear magnetic resonance (NMR) relaxometry is applied over a wide frequency and temperature range to get insight into the dynamic processes occurring in the plastically crystalline phase of the two isomers cyanocyclohexane (CNCH) and isocyanocyclohexane. The spin-lattice relaxation rate, R1(ω), is measured in the 0.01-30 MHz frequency range and transformed into the susceptibility representation χNMR ″ω=ωR1ω. Three relaxation processes are identified, namely, a main (α-) relaxation, a fast secondary (β-) relaxation, and a slow relaxation; they are very similar for the two isomers. Exploiting frequency-temperature superposition, master curves of χNMR ″ωτ are constructed and analyzed for different processes. The α-relaxation displays a pronounced non-Lorentzian susceptibility with a temperature independent width parameter, and the correlation times display a non-Arrhenius temperature dependence-features indicating cooperative dynamics of the overall reorientation of the molecules. KT 474 The β-relaxation shows high similarity with secondary relaxations in structural glasses. The extracted correlation times well agree with those reported by other techniques. A direct comparison of FC NMR and dielectric master curves for CNCH yields pronounced difference regarding the non-Lorentzian spectral shape as well as the relative relaxation strength of α- and β-relaxation. The correlation times of the slow relaxation follow an Arrhenius temperature dependence with a comparatively high activation energy. As the α-process involves liquid-like isotropic molecular reorientation, the slow process has to be attributed to vacancy diffusion, which modulates intermolecular dipole-dipole interactions, possibly accompanied by chair-chair interconversion of the cyclohexane ring. However, the low frequency relaxation features characteristic of vacancy diffusion cannot be detected due to experimental limitations.Ultrafast infrared spectroscopy has become a very important tool for studying the structure and ultrafast dynamics in solution. In particular, it has been recently applied to investigate the molecular interactions and motions of lithium salts in organic carbonates. However, there has been a discrepancy in the molecular interpretation of the spectral features and dynamics derived from these spectroscopies. Hence, the mechanism behind spectral features appearing in the carbonyl stretching region was further investigated using linear and nonlinear spectroscopic tools and the co-solvent dilution strategy. Lithium perchlorate in a binary mixture of dimethyl carbonate (DMC) and tetrahydrofuran was used as part of the dilution strategy to identify the changes of the spectral features with the number of carbonates in the first solvation shell since both solvents have similar interaction energetics with the lithium ion. Experiments showed that more than one carbonate is always participating in the lithium ion solvation structures, even at the low concentration of DMC. Moreover, temperature-dependent study revealed that the exchange of the solvent molecules coordinating the lithium ion is not thermally accessible at room temperature. Furthermore, time-resolved IR experiments confirmed the presence of vibrationally coupled carbonyl stretches among coordinated DMC molecules and demonstrated that this process is significantly altered by limiting the number of carbonate molecules in the lithium ion solvation shell. Overall, the presented experimental findings strongly support the vibrational energy transfer as the mechanism behind the off-diagonal features appearing on the 2DIR spectra of solutions of lithium salt in organic carbonates.In this work, we examine hydrogen-bond (H-bond) switching by employing the Markov State Model (MSM). During the H-bond switching, a water hydrogen initially H-bonded with water oxygen becomes H-bonded to a different water oxygen. MSM analysis was applied to trajectories generated from molecular dynamics simulations of the TIP4P/2005 model from a room-temperature state to a supercooled state. We defined four basis states to characterize the configuration between two water molecules H-bonded ("H"), unbound ("U"), weakly H-bonded ("w"), and alternative H-bonded ("a") states. A 16 × 16 MSM matrix was constructed, describing the transition probability between states composed of three water molecules. The mean first-passage time of the H-bond switching was estimated by calculating the total flux from the HU to UH states. It is demonstrated that the temperature dependence of the mean first-passage time is in accordance with that of the H-bond lifetime determined from the H-bond correlation function. Furthermore, the flux for the H-bond switching is decomposed into individual pathways that are characterized by different forms of H-bond configurations of trimers.

Autoři článku: Mckeelangston0996 (Glass Bennett)