Osbornekristoffersen0528
Additionally, although the decrease in the single muscle fiber cross-sectional area (fCSA) and the muscle fibers' number occurred in both slow-type and fast-type muscle fibers, the degree of atrophy was more remarkable in the fast-type fibers. However, CR suppressed the muscle fiber atrophy observed in the 29AL rats' SOL muscle by preserving the mCSA and the number of muscle fibers that declined with aging, and by decreasing the number of muscle fibers with a central nucleus, fibrosis and denervated muscle fibers. Overall, these results revealed that advanced aging separately reduces the number and fCSA of each muscle fiber type, but long-term CR can ameliorate this age-related sarcopenic muscle atrophy.Drug resistance remains a major challenge in achieving cures in cancer patients. Cabazitaxel has shown the ability to overcome drug resistance induced by paclitaxel and docetaxel; however, substantially high toxicity has been observed in patients receiving this agent, which compromises its efficacy. We have previously demonstrated that a polymeric platform (termed cabazitaxel-NPs) encapsulating the oligolactide-cabazitaxel conjugate exhibits desired antitumor efficacy and improved in vivo tolerability. However, we found that upon cabazitaxel treatment, cancer cells adapted to activate Akt signaling, which potentially discounts the drug efficacy. We therefore hypothesized that combing cabazitaxel nanotherapeutics with a pan-Akt inhibitor MK-2206 would synergistically sensitize the resistant cancer. In this study, we confirmed that nanoparticle formulation reduced the systemic toxicity, with higher tolerance than solution-based free cabazitaxel agent in animals. Interestingly, the activation of Akt signaling in the resistant cancer was reversed by the addition of MK-2206. In particular, the collaboration of these two ingredients was demonstrated to maximize the efficacy in vitro and in a xenograft model bearing paclitaxel-resistant tumors. Mechanistically, Akt inhibition increased the microtubule-stabilizing effect of cabazitaxel nanomedicine. Collectively, this report introduced a binary platform composed of cytotoxic nanotherapeutics and inhibitors with certain targets to combat multidrug resistance, and such a combined regimen has the potential for the clinical treatment of patients with resistant cancer.Poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) have attracted considerable interest in the medical community as a sustained-release drug delivery system for localized treatment. However, it is currently a grand challenge to simultaneously achieve low-dose drugs, stable and prolonged drug release, and long-term retention circumventing uptake by macrophages. Here, we construct a solvent-exchange in-situ depot system by incorporating progesterone (PRG) loaded PLGA NPs into a sucrose acetate isobutyrate (SAIB) and PLGA matrix for the long term treatment of Assisted Reproductive Technology (ART). The results showed that different solvent and PLGA contents could affect the drug release rate of PRG NPs-SAIB-PLGA in-situ depot system (PSPIDS). When DMSO was used as solvent with the addition of 8% PLGA to the depot, PSPIDS could achieve a constant drug release with no burst for 2 weeks in vitro. After a single intramuscular injection, such PSPIDS showed higher drug concentration and AUC (6773.0 ± 348.8 μg/L·h) over the entire 7-day testing period compared with the commercial multiple-day-dosing intramuscular PRG-oil solution (1914.5 ± 180.7 μg/L·h) in vivo. Importantly, PSPIDS could be administered at a dose of 3.65 mg/kg, which was one fourth of dose required for PRG-oil solution. The results demonstrate that PRG NPs could successfully achieve both reduced administered dosage and burst release, and therefore that PSPIDS is a promising long-acting composite system for hydrophobic drugs.Up to date, there were no approved drugs against coronavirus (COVID-19) disease that dangerously affects global health and the economy. Repurposing the existing drugs would be a promising approach for COVID-19 management. The antidepressant drugs, selective serotonin reuptake inhibitors (SSRIs) class, have antiviral, anti-inflammatory, and anticoagulant effects, which makes them auspicious drugs for COVID 19 treatment. GSK1059615 price Therefore, this study aimed to predict the possible therapeutic activity of SSRIs against COVID-19. Firstly, molecular docking studies were performed to hypothesize the possible interaction of SSRIs to the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-COV-2) main protease. Secondly, the candidate drug was loaded in lipid polymer hybrid (LPH) nanoparticles to enhance its activity. The studied SSRIs were Fluoxetine hydrochloride (FH), Atomoxteine, Paroxetine, Nisoxteine, Repoxteine RR, and Repoxteine SS. Interestingly, FH could effectively bind with SARS-COV-2 main protease via hydrogen bond formation with low binding energy (-6.7 kcal/mol). Moreover, the optimization of FH-LPH formulation achieved 65.1 ± 2.7% encapsulation efficiency, 10.3 ± 0.4% loading efficiency, 98.5 ± 3.5 nm particle size, and -10.5 ± 0.45 mV zeta potential. Additionally, it improved cellular internalization in a time-dependent manner with good biocompatibility on Human lung fibroblast (CCD-19Lu) cells. Therefore, the study suggested the potential activity of FH-LPH nanoparticles against the COVID-19 pandemic.Vaccination is regarded as the most effective intervention for controlling the coronavirus disease 2019 (COVID-19) pandemic. The objective of this study is to provide comprehensive information on lipid squalene nanoparticle (SQ@NP)-adjuvanted COVID-19 vaccines regarding modulating immune response and enhancing vaccine efficacy. After being adjuvanted with SQ@NP, the SARS-CoV-2 spike (S) subunit protein was intramuscularly (i.m.) administered to mice. Serum samples investigated by ELISA and virus neutralizing assay showed that a single-dose SQ@NP-adjuvanted S-protein vaccine can induce antigen-specific IgG and protective antibodies comparable with those induced by two doses of nonadjuvanted protein vaccine. When the mice received a boosting vaccine injection, anamnestic response was observed in the groups of adjuvanted vaccine. Furthermore, the secretion of cytokines in splenocytes, such as interferon (IFN)-γ, interleukin (IL)-5 and IL-10, was significantly enhanced after adjuvantation of S-protein vaccine with SQ@NP; however, this was not the case for the vaccine adjuvanted with conventional aluminum mineral salts. Histological examination of injection sites showed that the SQ@NP-adjuvanted vaccine was considerably well tolerated following i.m. injection in mice. These results pave the way for the performance tuning of optimal vaccine formulations against COVID-19.Lenvatinib mesylate (LM) is a first-line anticancer agent for the treatment of unresectable hepatocellular carcinoma, while it formed viscoelastic hydrogel when contacting with aqueous medium, which would significantly hinder its in vitro dissolution. The aim of this study was to systematicly explore the gelation mechanism and gel properties via thermal analysis, rheology, morphology and spectroscopy studies. The formed hydrogel was found to be composed of a new polymorph of crystalline LM, and its mechanical strength depended on the cross-linking degree of the fibrillar network structure. Spectroscopy analyses revealed that the intermolecular hydrogen bonds (the bifurcated hydrogen bond between the adjacent urea groups and the NH⋯OC hydrogen bond between the primary amide groups) as well as π-π stacking interactions (between the benzene ring and the quinoline ring) were suggested to be the driving forces for the self-assembly of LM during gelation process. Additionally, no gelation phenomenon was observed when suspending the base form lenvatinib in water, while it could form gel in various acidic solutions (e.g. hydrochloric acid, phosphoric acid and methanesulfonic acid) because the regenerated N+-H group increased the solubility of lenvatinib and promoted the balance between the dissolution or aggregation of LX (X acid radical ion) molecules in solutions. In conclusion, the charge-assisted bond N+-H in LM molecule and intermolecular non-covalent interactions drived the hydrogel formation of LM in aqueous media. This study elucidates the gelation mechanism and gel properties of LM hydrogel, which would be helpful to figure out strategy to eliminate its gelation fundamentally and pave the way for its further formulation development in future.In this study, novel cupric-tirapazamine [Cu(TPZ)2]-liposomes were developed as an effective hypoxia-targeted therapeutic, which potentiated radiotherapy in a three dimensional (3D) prostate cancer (PCa) model. To overcome the low water solubility of the Cu(TPZ)2, a remote loading method was developed to efficiently load the lipophilic complex into different liposomal formulations. The effect of pH, temperature, PEGylation, lipid composition, liposome size, lipid complex ratio on the liposome properties, and drug loading was evaluated. The highest loading efficiency was obtained at neutral pH, which was independent of lipid composition and incubation time. In addition, enhanced drug loading was achieved upon decreasing the lipidcomplex molar ratio with minimal effects on liposomes' morphology. Interestingly, the in vitro potency of the developed liposomes was easily manipulated by changing the lipid composition. The hydrophilic nature of our liposomal formulations improved the complex's solubility, leading to enhanced cellular uptake and toxicity, both in PCa monolayers and tumour spheroids. Moreover, Cu(TPZ)2-loaded liposomes combined with radiation, showed a significant reduction in PCa spheroids growth rate, compared to the free complex or radiation alone, which could potentiate radiotherapy in patients with localised advanced PCa.Clinically, rheumatoid arthritis (RA) is frequently accompanied by multi-system diseases. Among them, the incidence of comorbid tumors in RA is relatively high, resulting in a gradual increase in mortality; this poses a considerable challenge to clinical treatment. To date, no effective treatment plan for simultaneous tumor and RA therapy is available. Accordingly, we reported a sialic acid-modified doxorubicin hydrochloride liposome (DOX-SAL) that targets peripheral blood neutrophils (PBNs), which play an important role in tumors and RA. Furthermore, the prepared liposome induced PBN apoptosis by binding to L-selectin, which is highly expressed on the surface of PBNs activated by inflammation. This liposome, in turn, reduced the accumulation of inflammatory neutrophils at the disease site. In the first successfully established mouse model of RA comorbidity, induced by employing S180 sarcoma cells and collagen, DOX-SAL effectively inhibited tumor growth while simultaneously alleviating systemic RA symptoms without side effects. Additionally, the animals demonstrated adequate growth during the 48 days of treatment. This treatment strategy encompasses the best of both worlds, breaking the deadlock that tumors and RA cannot be effectively treated in parallel, highlighting a new concept and reference for the clinical treatment of comorbid tumors and RA.