Toftbrix1997

Z Iurium Wiki

Verze z 18. 9. 2024, 18:57, kterou vytvořil Toftbrix1997 (diskuse | příspěvky) (Založena nová stránka s textem „Tibetan gazelle (Procapra picticaudata) is an endangered ungulate in the Qinghai-Tibet Plateau, China. This study aimed to determine the influence of nano-…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Tibetan gazelle (Procapra picticaudata) is an endangered ungulate in the Qinghai-Tibet Plateau, China. This study aimed to determine the influence of nano-Se on antioxidant system in Se-deprived P. picticaudata. We analyzed contents of mineral elements in soil, forage, and animal tissue. Blood parameters and antioxidant indexes were also determined. The results showed that Se concentrations in the soil and forage from affected pasture were significantly lower than those in healthy area (P less then 0.01). Se concentrations in blood and hair from affected P. picticaudata were also significantly lower than those in healthy animals (P less then 0.01). Meanwhile, the levels of Hb, RBC, and PCV in affected gazelle were significantly lower than those in healthy animal (P less then 0.01). The activities of AST, ALT, LDH, CK, and UA content in affected animal were significantly lower than those in healthy gazelles (P less then 0.01). The levels of SOD, GSH-Px, CAT, and T-AOC in serum were significantly lower and the MDA content was significantly higher in affected compared with healthy gazelle (P less then 0.01). Affected P. picticaudata were treated orally with nano-Se, Se concentration in blood significantly increased and serum antioxidant indexes greatly returned to within the healthy range. Consequently, nano-Se could not only markedly increase the Se content in blood in Se-deprived P. picticaudata but also much improves the antioxidant capacity.A novel 1-aminocyclopropane-1-carboxylate deaminase producing bacterium, Gram- stain-negative, aerobic, motile, rod-shaped strain designated YM1C-6-2T was isolated from rhizosphere of maize grown in Northeast China. The 16S rRNA gene sequence analysis indicated that strain YM1C-6-2T belongs to the genus Mesorhizobium and is closely related to Mesorhizobium alhagi CCNWXJ12-2T and M. camelthorni CCNWXJ40-4T with sequence similarities of 98.4% and 97.9%, respectively. Multilocus sequence analysis of other housekeeping genes revealed that the new isolates YM1C-6-2T forms a phylogenetically group with some species in the genus Mesorhizobium. The genome size of strain YM1C-6-2T was 5.51 Mb, comprising 5378 predicted genes with a DNA G+C content of 64.5%. The average nucleotide identity and digital DNA-DNA hybridization comparisons between YM1C-6-2T and the most related type strains showed values below the accepted threshold for species discrimination. The major fatty acids of strain YM1C-6-2T were C190 cyclo ω8c (47.5%), summed feature 8 (C181ω7c and/or C181ω6c) (19.5%) and C160 (15.1%), which differed from the closely related reference strains in their relative abundance. The major polar lipids consist of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine and an unidentified aminophospholipid. Olaparib datasheet The predominant ubiquinone was identified as Quinone 10. Phenotypic and biochemical analysis results indicated that strain YM1C-6-2T can be distinguished from closely related type strains. Based on the above results, strain YM1C-6-2T represents a novel species of the genus Mesorhizobium, for which the name Mesorhizobium rhizophilum sp. nov. is proposed with YM1C-6-2T (= CGMCC 1.15487T = DSM 101712T) as the type strain.A Gram-negative, psychrophilic bacterium, designated strain GS1T, was isolated from a forest soil sample collected from the West Peak of Mt. Yushan, Yushan National Park, Taiwan. Cells grown in broth cultures were mostly non-motile and non-flagellated, whereas motile cells with monotrichous, subpolar flagella were also observed. The novel strain grew over a temperature range of 4-25 °C with optimum growth at 10-15 °C. It grew aerobically and was not capable of anaerobic growth by fermentation of D-glucose or other carbohydrates. Ubiquinone 8 was the predominant isoprenoid quinone. The major polar lipids comprised phosphatidylethanolamine, diphosphatidylglycerol and dimethylaminoethanol. Cellular fatty acids were dominated by C161ω7c (35.2%), C160 (19.5%), C181ω7c (18.8%) and C170ω7c cyclo (15.5%). The DNA G + C content was 49.2 mol% evaluated according to the genomic sequencing data. Strain GS1T shared more than 96.5% 16S rRNA gene sequence similarities with type strains of four Collimonas species (97.2-97.5%), three Glaciimonas species (97.3% for each of the three) and Oxalicibacterium solurbis (96.5%). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain GS1T formed a stable genus-level clade with type strains of species in the genus Glaciimonas in the family Oxalobacteraceae and GS1T was an outgroup with respect to these Glaciimonas species. Characteristically, strain GS1T could be easily distinguished from the recognised Glaciimonas species by exhibition of swimming motility with monotrichous, subpolar flagellum in some of the cells, ability to grow in NaCl at 2% but not at 3% and the distinguishable fatty acid profiles. On the basis of the polyphasic taxonomic data from this study, strain GS1T is considered to represent a novel species of the genus Glaciimonas, for which the name Glaciimonas soli sp. nov. is proposed. The type strain is GS1T (= JCM 33275T = BCRC 81091T).Sepsis can induce acute and chronic changes in the central nervous system termed sepsis-associated encephalopathy (SAE). Not only cognitive deficits but also anxiety, depression, and post-traumatic stress disorder are common in severe sepsis survivors. In this study, we demonstrated that amitriptyline, a classic tricyclic antidepressant, reduced sepsis-induced brain damage through the tropomyosin receptor kinase A (TrkA) signaling pathway. Amitriptyline ameliorated neuronal loss assessed by Nissl staining in a mouse cecal ligation and puncture (CLP)-induced sepsis model. Furthermore, amitriptyline reduced early gliosis assessed by immunofluorescence and late cognitive deficits assessed by the Morris water maze (MWM) test. Moreover, amitriptyline treatment attenuated oxidative stress indicated by less superoxide dismutase (SOD) and catalase (CAT) activity consumption and malondialdehyde (MDA) accumulation. Interestingly, those protective effects of amitriptyline could be abolished by GW441756, a TrkA signaling pathway inhibitor.

Autoři článku: Toftbrix1997 (Lyons Mose)