Kudskkara6090
The genes miR-4510 and glypican-3 (GPC3) have reported to be closely associated with tumors, with miR-4510 inversely correlated with GPC3 mRNA and protein in hepatocellular carcinoma samples. Glypican-3-expressing gastric cancer (GPC3-GC), characterized as gastric cancer (GC) expressing GPC3, accounts for 11% of the GC cases. However, the expression and mechanism of action of miR-4510 in GPC3-GC have not been clearly defined. We found that miR-4510 expression in GC tissues was significantly lower than that in the adjacent tissues (p less then 0.001). miRNA-4510 expression in GPC3-GC was significantly lower than that in GPC3-negative GC tissue (p less then 0.001). Our study confirmed that miR-4510 is inversely correlated with GPC3 in gastric cancer samples and that GPC3 is a direct target gene of miR-4510. The proportion of M2 macrophages in GC with low expression of miR-4510 was significantly increased, while the proliferation of CD8+ T cells was limited. miR-4510 may change the immunosuppressive signals in the tumor microenvironment by downregulating GPC3 and inhibiting gastric cancer cell metastasis. Oxaliplatin treatment may become a specific therapeutic drug for patients with miR-4510 inhibition and GPC3-GC.
To describe three cases with neurological symptoms after SARS-CoV-2 vaccination.
A case series followed by a review of the literature, describing hypotheses on how neurological symptoms might develop after vaccination.
The different temporal relationship between the onset or worsening of different neurological symptoms suggests different pathophysiological mechanisms. Progression of post-infectious myoclonus, caused by a previous SARS-CoV-2-infection, shortly after vaccination suggests a renewed auto-immune mediated crossreaction of antibodies to both viral epitopes and central nervous system components. Thunderclap headache after vaccination suggests a similar pathophysiological mechanism to the headache and other flu-like symptoms described after vaccination against other viruses. This might be ascribed to the activation of immunoinflammatory mediators or accompanying fever. Although headache accompanied by encephalopathy and focal neurological deficit might occur as part of a cytokine release syndrompossible pathophysiological mechanisms and associations with the SARS-CoV-2 vaccine.Recent studies have established the presence of nociceptive steady-state evoked potentials (SSEPs), generated in response to thermal or intra-epidermal electric stimuli. This study explores cortical sources and generation mechanisms of nociceptive SSEPs in response to intra-epidermal electric stimuli. Our method was to stimulate healthy volunteers (n = 22, all men) with 100 intra-epidermal pulse sequences. Each sequence had a duration of 8.5 s, and consisted of pulses with a pulse rate between 20 and 200 Hz, which was frequency modulated with a multisine waveform of 3, 7 and 13 Hz (n = 10, 1 excluded) or 3 and 7 Hz (n = 12, 1 excluded). As a result, evoked potentials in response to stimulation onset and contralateral SSEPs at 3 and 7 Hz were observed. The SSEPs at 3 and 7 Hz had an average time delay of 137 ms and 143 ms respectively. The evoked potential in response to stimulation onset had a contralateral minimum (N1) at 115 ms and a central maximum (P2) at 300 ms. Sources for the multisine SSEP at 3 and 7 Hz were found through beamforming near the primary and secondary somatosensory cortex. Sources for the N1 were found near the primary and secondary somatosensory cortex. Sources for the N2-P2 were found near the supplementary motor area. Harmonic and intermodulation frequencies in the SSEP power spectrum remained below a detectable level and no evidence for nonlinearity of nociceptive processing, i.e. processing of peripheral firing rate into cortical evoked potentials, was found.
Twitter has become one of the most important social media platforms in science communication. During scientific conferences, Twitter can facilitate the communication between audience and speakers present at the venue and can extend the reach of a conference to participants following along from home. To examine whether Twitter activity can serve as a surrogate parameter for attendance at the RSNA conferences in 2019 and in 2020, and to characterize changes in topics discussed due to the virtual character of the 2020 RSNA conference.
The Twitter API and R Studio were used to analyze the absolute number and frequency of tweets, retweets, and conference-related hashtags during the 2019 and 2020 RSNA conference. Topics of discussion were compared across years by visualizing networks of co-occurring hashtags.
There was a 46% decrease in total tweets and a 39% decrease in individual Twitter users in 2020, mirroring a 43% decrease in registered attendees during the virtual conference. Hashtags related to social initiatives in radiology (e.g., "#radxx" and "#womeninradiology" for promoting women's empowerment in radiology or "#pinksocks," "#weareradiology" and "#diversityisgenius" for diversity in general) were less frequently used in 2020 than in 2019.
Twitter and congress attendance were highly related and interpersonal topics underwent less discussion during the virtual meeting. Overall engagement during the virtual conference in 2020 was lower compared to the in-person conference in 2019.
Twitter and congress attendance were highly related and interpersonal topics underwent less discussion during the virtual meeting. Overall engagement during the virtual conference in 2020 was lower compared to the in-person conference in 2019.The deregulation of circular RNAs (circRNAs) is involved in cancer development. CircRNA polo-like kinase 1 (circPLK1) was reported to promote breast cancer development. However, the role of circPLK1 in malignant pleural mesothelioma (MPM) is unclear. The expression of circPLK1, miR-1294, and high mobility group AT-hook 1 (HMGA1) mRNA was measured by quantitative real-time PCR (qPCR). Cell viability was detected by CCK-8 assay. Colony formation ability was monitored by colony formation assay. Cell proliferation was detected by EdU assay. Cell migration and cell invasion were monitored by transwell assay. Cancer cell stemness was investigated by sphere formation assay. The protein levels of marker proteins and HMGA1 expression were measured by western blot analysis. The binding relationship between miR-1294 and circPLK1 or HMGA1 was validated by pull-down assay, dual-luciferase reporter assay or RIP assy. Animal study was performed to disclose the role of circPLK1 in vivo. Exosomes were identified by transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). CircPLK1 was upregulated in MPM tumor tissues and cell lines. CircPLK1 knockdown suppressed the proliferation, migration, invasion and stemness of MPM cells. CircPLK1 contained a binding site for miR-1294 and thus bound to miR-1294 to sequester its expression. Inhibition of miR-1294 reversed the effects of circPLK1 knockdown. HMGA1 was a target of miR-1294, and circPLK1 bound to miR-1294 to increase the expression of HMGA1. MiR-1294 restoration also suppressed the proliferation, migration, invasion and stemness of MPM cells, while these effects were abolished by HMGA1 overexpression. In addition, circPLK1 knockdown inhibited tumor growth in vivo. CircPLK1 was overexpressed in exosomes derived from serum of MPM patients. CircPLK1 knockdown inhibited MPM cell proliferation, migration, invasion and stemness by targeting the miR-1294/HMGA1 pathway.
To analyse clinical characteristics and computer tomography (CT) findings of hepatic epithelioid haemangioendothelioma (HEH) and to determine differential features compared with liver metastasis (LM).
This retrospective study included 80 patients with histopathologically confirmed HEH (n = 20) and LM (n = 60) of different primary tumours who underwent dynamic contrast-enhanced CT scans. CT findings included the location, contour, size, number, margin, and density of lesions, the patterns and degree of contrast enhancement of lesions, vascular invasion and changes in other organs. The enhancement ratio (ER) and tumour-to-normal parenchyma ratio (TNR) were calculated. Receiver operating characteristic curves (ROCs) were used to determine areas under the curve (AUCs).
About 65% of HEH lesions were located in submarginal areas. Significant differences were observed between HEH and LM patients in age, sex, and tumour marker positivity (p < 0.05). HEH showed minimal to slight enhancement, thin ring-like enhancement in arterial phase, and slight, homogeneous, progressive enhancement in the portal phase. HEH presented capsule retraction, and the "target" sign and the "lollipop" sign were significantly more frequent than in LM (p < 0.05). The ER and TNR in the arterial phase of HEH were lower than those of LM (p < 0.05). AUCs of ER and TNR in the arterial phase were 0.74 and 0.73, respectively.
Lesions in subcapsular locations, capsular retraction, slight and thin ring-like enhancement, "target" and "lollipop" signs and lower ER and TNR in the arterial phase may represent important features of HEH compared with LM.
Lesions in subcapsular locations, capsular retraction, slight and thin ring-like enhancement, "target" and "lollipop" signs and lower ER and TNR in the arterial phase may represent important features of HEH compared with LM.Flooding negatively influences the growth and development of several plant species. click here Here, we show that the flood tolerance of young Handroanthus chrysotrichus plants involves growth deficit, carbon assimilation reductions, starch remobilization, and energy regulation. The effect of hypoxia was evaluated in a controlled experiment consisting of plants subjected to normoxia and water-logging, with later recovery. We measured morphological changes, gas exchange, photosynthetic pigments, soluble carbohydrates and starch contents, the activity of the enzymes alcohol dehydrogenase (ADH), and pyruvate decarboxylase (PDC), and ATP and ADP levels. While control plants showed normal appearance and growth, flooded plants exhibited a drastic decrease in growth, necrosis of some root tips, hypertrophic lenticels on the stems, and foliar chlorosis. Oxygen deprivation in root cells led to a significant decrease in stomatal conductance. The low Amax rates caused a decline in foliar soluble sugar content at 20 days and a subsequent increase in the leaves and roots, coinciding with starch degradation at 40 days. We also observed increases of 220.5% in ADH and 292% in PDC activities in the roots at 20 and 40 days of flooding. The activation of anaerobic metabolism in stressed plants was an essential mechanism for ATP regulation in both tissues used to maintain a minimal metabolism to cope with hypoxia to the detriment of growth. The post-stress recovery process in H. chrysotrichus occurred slowly, with gas exchange gradually resumed and anaerobic metabolism and sugar content maintained to improve energy regulation.Because of stem cells are limited by the low efficiency of their cell homing and survival in vivo, cell delivery systems and scaffolds have attracted a great deal of attention for stem cells' successful clinical practice. β-chitin nanofibers (β-ChNF) were prepared from squid pens in this study. Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy proved that β-ChNFs with the diameter of 5 to 10 nm were prepared. β-ChNF dispersion became gelled upon the addition of cell culture medium. Cell culture experiments showed that β-ChNFs exhibited negligible cytotoxicity towards ADSCs and L929 cells, and it was found that more exosomes were secreted by the globular ADSCs grown in the β-ChNF hydrogel. The vivo experiments of rats showed that the ADSCs-loaded β-ChNF hydrogel could directly cover the wound surface and significantly accelerate the wound healing and promote the generation of epithelization, granulation tissue and collagen. In addition, the ADSCs-loaded β-ChNF hydrogel clearly regulated the expressions of VEGFR, α-SMA, collagen I and collagen III.