Dalsgaardkent0018
Specifically, long range positively correlated ARFIMA processes with differencing parameter d ≃ 0.05 , d ≃ 0.15 and d ≃ 0.25 are consistent with moving average cluster entropy results obtained in time series of DJIA, S&P500 and NASDAQ. The findings clearly point to a variability of price returns, consistently with a price dynamics involving multiple temporal scales and, thus, short- and long-run volatility components. An important aspect of the proposed approach is the ability to capture detailed horizon dependence over relatively short horizons (one to twelve months) and thus its relevance to define risk analysis indices.The informational re-interpretation of the basic laws of the mechanics exploiting the Landauer principle is suggested. When a physical body is in rest or it moves rectilinearly with the constant speed, zero information is transferred; thus, the informational affinity of the rest state and the rectilinear motion with a constant speed is established. Inertial forces may be involved in the erasure/recording of information. The analysis of the minimal Szilard thermal engine as seen from the noninertial frame of references is carried out. The Szilard single-particle minimal thermal engine undergoes isobaric expansion relative to accelerated frame of references, enabling the erasure of 1 bit of information. The energy ΔQ spent by the inertial force for the erasure of 1 bit of information is estimated as Δ Q ≅ 5 3 k B T ¯ , which is larger than the Landauer bound but qualitatively is close to it. The informational interpretation of the equivalence principle is proposed the informational content of the inertial and gravitational masses is the same.The problem of constructing effective statistical tests for random number generators (RNG) is considered. Currently, there are hundreds of RNG statistical tests that are often combined into so-called batteries, each containing from a dozen to more than one hundred tests. When a battery test is used, it is applied to a sequence generated by the RNG, and the calculation time is determined by the length of the sequence and the number of tests. Generally speaking, the longer is the sequence, the smaller are the deviations from randomness that can be found by a specific test. Thus, when a battery is applied, on the one hand, the "better" are the tests in the battery, the more chances there are to reject a "bad" RNG. On the other hand, the larger is the battery, the less time it can spend on each test and, therefore, the shorter is the test sequence. In turn, this reduces the ability to find small deviations from randomness. To reduce this trade-off, we propose an adaptive way to use batteries (and other sets) of tests, which requires less time but, in a certain sense, preserves the power of the original battery. We call this method time-adaptive battery of tests. The suggested method is based on the theorem which describes asymptotic properties of the so-called p-values of tests. Namely, the theorem claims that, if the RNG can be modeled by a stationary ergodic source, the value - l o g π ( x 1 x 2 … x n ) / n goes to 1 - h when n grows, where x 1 x 2 … is the sequence, π ( ) is the p-value of the most powerful test, and h is the limit Shannon entropy of the source.Due to the complexity of wind speed, it has been reported that mixed-noise models, constituted by multiple noise distributions, perform better than single-noise models. However, most existing regression models suppose that the noise distribution is single. Therefore, we study the Least square S V R of the Gaussian-Laplacian mixed homoscedastic ( G L M - L S S V R ) and heteroscedastic noise ( G L M H - L S S V R ) for complicated or unknown noise distributions. The ALM technique is used to solve model G L M - L S S V R . G L M - L S S V R is used to predict short-term wind speed with historical data. The prediction results indicate that the presented model is superior to the single-noise model, and has fine performance.In 1993, Charles H [...]."A Mathematical Theory of Communication" was published in 1948 by Claude Shannon to address the problems in the field of data compression and communication over (noisy) communication channels. Since then, the concepts and ideas developed in Shannon's work have formed the basis of information theory, a cornerstone of statistical learning and inference, and has been playing a key role in disciplines such as physics and thermodynamics, probability and statistics, computational sciences and biological sciences. In this article we review the basic information theory based concepts and describe their key applications in multiple major areas of research in computational biology-gene expression and transcriptomics, alignment-free sequence comparison, sequencing and error correction, genome-wide disease-gene association mapping, metabolic networks and metabolomics, and protein sequence, structure and interaction analysis.A very important task in Mobile Cognitive Radio Networks (MCRN) is to ensure that the system releases a given frequency when a Primary User (PU) is present, by maintaining the principle to not interfere with its activity within a cognitive radio system. Afterwards, a cognitive protocol must be set in order to change to another frequency channel that is available or shut down the service if there are no free channels to be found. https://www.selleckchem.com/products/jnj-42756493-erdafitinib.html The system must sense the frequency spectrum constantly through the energy detection method which is the most commonly used. However, this analysis takes place in the time domain and signals cannot be easily identified due to changes in modulation, power and distance from mobile users. The proposed system works with Gaussian Minimum Shift Keying (GMSK) and Orthogonal Frequency Division Multiplexing (OFDM) for systems from Global System for Mobile Communication (GSM) to 5G systems, the signals are analyzed in the frequency domain and the Rényi-Entropy method is used as a tool to distinguish the noise and the PU signal without prior knowledge of its features. The main contribution of this research is that uses a Software Defined Radio (SDR) system to implement a MCRN in order to measure the behavior of Primary and Secondary signals in both time and frequency using GNURadio and OpenBTS as software tools to allow a phone call service between two Secondary Users (SU). This allows to extract experimental results that are compared with simulations and theory using Rényi-entropy to detect signals from SU in GMSK and OFDM systems. It is concluded that the Rényi-Entropy detector has a higher performance than the conventional energy detector in the Additive White Gaussian Noise (AWGN) and Rayleigh channels. The system increases the detection probability (PD) to over 96% with a Signal to Noise Ratio (SNR) of 10dB and starting 5 dB below energy sensing levels.