Pacedavis3776

Z Iurium Wiki

Verze z 17. 9. 2024, 23:17, kterou vytvořil Pacedavis3776 (diskuse | příspěvky) (Založena nová stránka s textem „These findings provide a contextual and mechanistic framework for using TNKSi in anticancer treatment that warrants further comprehensive preclinical and c…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

These findings provide a contextual and mechanistic framework for using TNKSi in anticancer treatment that warrants further comprehensive preclinical and clinical evaluations.The hypothalamic-pituitary-adrenal (HPA) axis forms a complex neuroendocrine system that regulates the body's response to stress such as starvation. In contrast with the glucocorticoid receptor (GR), Zinc finger and BTB domain containing 32 (ZBTB32) is a transcription factor with poorly described functional relevance in physiology. This study shows that ZBTB32 is essential for the production of glucocorticoids (GCs) in response to starvation, since ZBTB32-/- mice fail to increase their GC production in the absence of nutrients. In terms of mechanism, GR-mediated upregulation of adrenal Scarb1 gene expression was absent in ZBTB32-/- mice, implicating defective cholesterol import as the cause of the poor GC synthesis. These lower GC levels are further associated with aberrations in the metabolic adaptation to starvation, which could explain the progressive weight gain of ZBTB32-/- mice. In conclusion, ZBTB32 performs a crosstalk with the GR in the metabolic adaptation to starvation via regulation of adrenal GC production.We present Raptor, a system for approximately searching many queries such as next-generation sequencing reads or transcripts in large collections of nucleotide sequences. Raptor uses winnowing minimizers to define a set of representative k-mers, an extension of the interleaved Bloom filters (IBFs) as a set membership data structure and probabilistic thresholding for minimizers. Our approach allows compression and partitioning of the IBF to enable the effective use of secondary memory. We test and show the performance and limitations of the new features using simulated and real datasets. Our data structure can be used to accelerate various core bioinformatics applications. We show this by re-implementing the distributed read mapping tool DREAM-Yara.Base editing (BE) is a promising genome engineering tool for modifying DNA or RNA and has been widely used in various microorganisms as well as eukaryotic cells. Despite the proximal protospacer adjacent motif (PAM) is critical to the targeting range and off-target effect of BE, there is still lack of a specific approach to analyze the PAM pattern in BE systems. Here, we developed a base editing-coupled survival screening method. Using dCas9 from Streptococcus pyogenes (SpdCas9) and its variants xdCas9 3.7 and dCas9 NG as example, their PAM patterns in BE systems were extensively characterized using the NNNN PAM library with high sensitivity. In addition to the typical PAM recognition features, we observed more unique PAMs exhibiting BE activity. These PAM patterns will boost the finding of potential off-target editing event arising from non-canonical PAMs and provide the guidelines for PAM usage in the BE system.To infer a "live" protein network in single cells, we developed a novel Protein Localization and Modification-based Covariation Network (PLOM-CON) analysis method using a large set of quantitative data on the abundance (quantity), post-translational modification state (quality), and localization/morphological information of target proteins from microscope immunostained images. The generated network exhibited synchronized time-dependent behaviors of the target proteins to visualize how a live protein network develops or changes in cells under specific experimental conditions. As a proof of concept for PLOM-CON analysis, we applied this method to elucidate the role of actin scaffolds, in which actin fibers and signaling molecules accumulate and form membrane-associated protein condensates, in insulin signaling in rat hepatoma cells. We found that the actin scaffold in cells may function as a platform for glycogenesis and protein synthesis upon insulin stimulation.We developed a spatially-tracked single neuron transcriptomics map of an intrinsic cardiac ganglion, the right atrial ganglionic plexus (RAGP) that is a critical mediator of sinoatrial node (SAN) activity. This 3D representation of RAGP used neuronal tracing to extensively map the spatial distribution of the subset of neurons that project to the SAN. RNA-seq of laser capture microdissected neurons revealed a distinct composition of RAGP neurons compared to the central nervous system and a surprising finding that cholinergic and catecholaminergic markers are coexpressed, suggesting multipotential phenotypes that can drive neuroplasticity within RAGP. High-throughput qPCR of hundreds of laser capture microdissected single neurons confirmed these findings and revealed a high dimensionality of neuromodulatory factors that contribute to dynamic control of the heart. Neuropeptide-receptor coexpression analysis revealed a combinatorial paracrine neuromodulatory network within RAGP informing follow-on studies on the vagal control of RAGP to regulate cardiac function in health and disease.The current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has created a significant threat to global health. While respiratory aerosols or droplets are considered as the main route of human-to-human transmission, secretions expelled by infected individuals can also contaminate surfaces and objects, potentially creating the risk of fomite-based transmission. Consequently, frequently touched objects such as paper currency and coins have been suspected as potential transmission vehicle. To assess the risk of SARS-CoV-2 transmission by banknotes and coins, we examined the stability of SARS-CoV-2 and bovine coronavirus, as surrogate with lower biosafety restrictions, on these different means of payment and developed a touch transfer method to examine transfer efficiency from contaminated surfaces to fingertips. Although we observed prolonged virus stability, our results indicate that transmission of SARS-CoV-2 via contaminated coins and banknotes is unlikely and requires high viral loads and a timely order of specific events.dhc-1(or283ts); mel-28(t1684) double mutants have a severely reduced brood size compared to the wild-type and compared to each single mutant. To determine if this low-fecundity phenotype is associated with oocyte maturity defects, we used markers to assess the maturity of oocytes in the proximal gonad. We studied phosphorylated histone H3, a marker normally associated with mature oocytes, and DAO-5, a nucleolar marker normally associated with immature oocytes. We found that in the double mutants, the oocyte occupying the -1 position frequently retains DAO-5 and fails to accumulate phosphorylated histone H3. This suggests that the simultaneous disruption of dynein and MEL-28 can lead to failure of the oocyte maturity program.Recent advances in computer hardware and software, particularly the availability of machine learning libraries, allow the introduction of data-based topics such as machine learning into the Biophysical curriculum for undergraduate and/or graduate levels. However, there are many practical challenges of teaching machine learning to advanced-level students in the biophysics majors, who often do not have a rich computational background. Aiming to overcome such challenges, we present an educational study, including the design of course topics, pedagogical tools, and assessments of student learning, to develop the new methodology to incorporate the basis of machine learning in an existing Biophysical elective course, and engage students in exercises to solve problems in an interdisciplinary field. In general, we observed that students had ample curiosity to learn and apply machine learning algorithms to predict molecular properties. Notably, feedback from the students suggests that care must be taken to ensure student preparations for understanding the data-driven concepts and fundamental coding aspects required for using machine learning algorithms. This work establishes a framework for future teaching approaches that unite machine learning and any existing course in the biophysical curriculum, while also pinpointing the critical challenges that educators and students will likely face.More than half of cancer patients are treated with radiotherapy, which kills tumor cells by directly and indirectly inducing DNA damage, including cytotoxic DNA double-strand breaks (DSBs). Tumor cells respond to these threats by activating a complex signaling network termed the DNA damage response (DDR). The DDR arrests the cell cycle, upregulates DNA repair, and triggers apoptosis when damage is excessive. Sodium acrylate in vitro The DDR signaling and DNA repair pathways are fertile terrain for therapeutic intervention. This review highlights strategies to improve therapeutic gain by targeting DDR and DNA repair pathways to radiosensitize tumor cells, overcome intrinsic and acquired tumor radioresistance, and protect normal tissue. Many biological and environmental factors determine tumor and normal cell responses to ionizing radiation and genotoxic chemotherapeutics. These include cell type and cell cycle phase distribution; tissue/tumor microenvironment and oxygen levels; DNA damage load and quality; DNA repair capacity; and susceptibility to apoptosis or other active or passive cell death pathways. We provide an overview of radiobiological parameters associated with X-ray, proton, and carbon ion radiotherapy; DNA repair and DNA damage signaling pathways; and other factors that regulate tumor and normal cell responses to radiation. We then focus on recent studies exploiting DSB repair pathways to enhance radiotherapy therapeutic gain.Glioblastoma (GBM) is the most common primary malignant brain tumor in adults and has an exceedingly low median overall survival of only 15 months. Current standard-of-care for GBM consists of gross total surgical resection followed by radiation with concurrent and adjuvant chemotherapy. Temozolomide (TMZ) is the first-choice chemotherapeutic agent in GBM; however, the development of resistance to TMZ often becomes the limiting factor in effective treatment. While O6-methylguanine-DNA methyltransferase repair activity and uniquely resistant populations of glioma stem cells are the most well-known contributors to TMZ resistance, many other molecular mechanisms have come to light in recent years. Key emerging mechanisms include the involvement of other DNA repair systems, aberrant signaling pathways, autophagy, epigenetic modifications, microRNAs, and extracellular vesicle production. This review aims to provide a comprehensive overview of the clinically relevant molecular mechanisms and their extensive interconnections to better inform efforts to combat TMZ resistance.The field of photodynamic therapy (PDT) has continued to show promise as a potential method for treating tumors. In this work a photosensitizer (PS) has been delivered to cancer cell lines for PDT by incorporation into the metal-organic framework (MOF) as an organic linker. By functionalizing the surface of MOF nanoparticles with maltotriose the PS can efficiently target cancer cells with preferential uptake into pancreatic and breast cancer cell lines. Effective targeting overcomes some current problems with PDT including long-term photosensitivity and tumor specificity. Developing a PS with optimal absorption and stability is one of the foremost challenges in PDT and the synthesis of a chlorin which is activated by long-wavelength light and is resistant to photo-bleaching is described. This chlorin-based MOF shows anti-cancer ability several times higher than that of porphyrin-based MOFs with little toxicity to normal cell lines and no dark toxicity.

Autoři článku: Pacedavis3776 (Broussard Molina)