Kuhnfraser7725
In addition to promoting cystoblast divisions and meiotic entry, dazl is required for germline stem cell establishment and fertility.
Standard-of-care treatment for metastatic hormone receptor-positive (HR
), HER2-negative (HER2
) breast cancer includes endocrine therapy (ET) combined with a cyclin-dependent kinase 4/6 inhibitor (CDK4/6i). Optimal treatment after progression on CDK4/6i is unknown. The TRINITI-1 trial investigated ribociclib, a CDK4/6i that has recently demonstrated significant overall survival benefit in two phase III trials, in combination with everolimus and exemestane in patients with HR
, HER2
advanced breast cancer (ABC) after progression on a CDK4/6i.
This multicenter, open-label, single-arm, phase I/II study included patients with locally advanced/metastatic HR
/HER2
breast cancer. The primary endpoint was clinical benefit rate (CBR) at week 24 among patients with ET-refractory disease with progression on a CDK4/6i. DNA Damage inhibitor Other endpoints included safety and biomarker analysis.
Of 104 patients enrolled (phases I and II), 96 had prior CDK4/6i. Recommended phase II doses (all once daily days 1-28 of 28-day cycle) were ribociclib 300 mg, everolimus 2.5 mg, and exemestane 25 mg (group 1) and ribociclib 200 mg, everolimus 5 mg, and exemestane 25 mg (group 2). CBR among 95 efficacy-evaluable patients (phases I and II) at week 24 was 41.1% (95% confidence interval, 31.1-51.6), which met the primary endpoint (predetermined threshold 10%). Common adverse events included neutropenia (69.2%) and stomatitis (40.4%). No new safety signals were observed; no grade 3/4 QTc prolongation was reported.
Preliminary TRINITI-1 safety and efficacy results support further investigation of CDK4/6 blockade and targeting of the PI3K/AKT/mTOR signaling pathway in patients with ET-refractory HR
/HER2
ABC after progression on a CDK4/6i.
Preliminary TRINITI-1 safety and efficacy results support further investigation of CDK4/6 blockade and targeting of the PI3K/AKT/mTOR signaling pathway in patients with ET-refractory HR+/HER2- ABC after progression on a CDK4/6i.
Histopathology evaluation is the gold standard for diagnosing clear cell (ccRCC), papillary, and chromophobe renal cell carcinoma (RCC). However, interrater variability has been reported, and the whole-slide histopathology images likely contain underutilized biological signals predictive of genomic profiles.
To address this knowledge gap, we obtained whole-slide histopathology images and demographic, genomic, and clinical data from The Cancer Genome Atlas, the Clinical Proteomic Tumor Analysis Consortium, and Brigham and Women's Hospital (Boston, MA) to develop computational methods for integrating data analyses. Leveraging these large and diverse datasets, we developed fully automated convolutional neural networks to diagnose renal cancers and connect quantitative pathology patterns with patients' genomic profiles and prognoses.
Our deep convolutional neural networks successfully detected malignancy (AUC in the independent validation cohort 0.964-0.985), diagnosed RCC histologic subtypes (independent validation AUCs of the best models 0.953-0.993), and predicted stage I ccRCC patients' survival outcomes (log-rank test
= 0.02). Our machine learning approaches further identified histopathology image features indicative of copy-number alterations (AUC > 0.7 in multiple genes in patients with ccRCC) and tumor mutation burden.
Our results suggest that convolutional neural networks can extract histologic signals predictive of patients' diagnoses, prognoses, and genomic variations of clinical importance. Our approaches can systematically identify previously unknown relations among diverse data modalities.
Our results suggest that convolutional neural networks can extract histologic signals predictive of patients' diagnoses, prognoses, and genomic variations of clinical importance. Our approaches can systematically identify previously unknown relations among diverse data modalities.Increasing resistance to antifungal therapy is an impediment to the effective treatment of fungal infections. Candida glabrata is an opportunistic human fungal pathogen that is inherently less susceptible to cost-effective azole antifungals. Gain-of-function mutations in the Zn-finger pleiotropic drug resistance transcriptional activator-encoding gene CgPDR1 are the most prevalent causes of azole resistance in clinical settings. CgPDR1 is also transcriptionally activated upon azole exposure; however, factors governing CgPDR1 gene expression are not yet fully understood. Here, we have uncovered a novel role for two FK506-binding proteins, CgFpr3 and CgFpr4, in the regulation of the CgPDR1 regulon. We show that CgFpr3 and CgFpr4 possess a peptidyl-prolyl isomerase domain and act redundantly to control CgPDR1 expression, as a Cgfpr3Δ4Δ mutant displayed elevated expression of the CgPDR1 gene along with overexpression of its target genes, CgCDR1, CgCDR2, and CgSNQ2, which code for ATP-binding cassette multidrug transporters. Furthermore, CgFpr3 and CgFpr4 are required for the maintenance of histone H3 and H4 protein levels, and fluconazole exposure leads to elevated H3 and H4 protein levels. Consistent with the role of histone proteins in azole resistance, disruption of genes coding for the histone demethylase CgRph1 and the histone H3K36-specific methyltransferase CgSet2 leads to increased and decreased susceptibility to fluconazole, respectively, with the Cgrph1Δ mutant displaying significantly lower basal expression levels of the CgPDR1 and CgCDR1 genes. These data underscore a hitherto unknown role of histone methylation in modulating the most common azole antifungal resistance mechanism. Altogether, our findings establish a link between CgFpr-mediated histone homeostasis and CgPDR1 gene expression and implicate CgFpr in the virulence of C. glabrata.Antibiotics that can treat or prevent infectious diseases play an important role in medical therapy. However, the use of antibiotics has potentially negative effects on the health of the host. For example, antibiotics use may affect the host's immune system by altering the gut microbiota. Therefore, the aim of the study was to investigate the influence of antifungal (fluconazole) treatment on the gut microbiota and immune system of mice. Results showed that the gut microbial composition of mice receiving fluconazole treatment was significantly changed after the trial. Fluconazole did not affect the relative abundance of bacteria but significantly reduced the diversity of bacterial flora. In the bacteriome, Firmicutes and Proteobacteria significantly increased, while Bacteroidetes, Deferribacteres, Patescibacteria, and Tenericutes showed a remarkable reduction in the fluconazole-treated group compared with the control group. In the mycobiome, the relative abundance of Ascomycota was significantly decreased and Mucoromycota was significantly increased in the intestine of mice treated with fluconazole compared to the control group. Reverse transcription-quantitative PCR (RT-qPCR) results showed that the relative gene expression of ZO-1, occludin, MyD88, interleukin-1β (IL-1β), and IL-6 was decreased in the fluconazole-treated group compared to the control. Serum levels of IL-2, LZM, and IgM were significantly increased, while the IgG level was considerably downregulated in the fluconazole-treated compared to the control group. These results suggest that the administration of fluconazole can influence the gut microbiota and that a healthy gut microbiome is important for the regulation of the host immune responses.Xpert MTB/RIF rapidly detects resistance to rifampicin (RR); however, this test misses I491F-RR conferring rpoB mutation, common in southern Africa. In addition, Xpert MTB/RIF does not distinguish between viable and dead Mycobacterium tuberculosis (MTB). We aimed to investigate the ability of thin-layer agar (TLA) direct drug-susceptibility testing (DST) to detect MTB and its drug-resistance profiles in field conditions in Eswatini. Consecutive samples were tested in parallel with Xpert MTB/RIF and TLA for rifampicin (1.0 μg/ml) and ofloxacin (2.0 μg/ml). TLA results were compared at the Reference Laboratory in Antwerp with indirect-DST on Löwenstein-Jensen or 7H11 solid media and additional phenotypic and genotypic testing to resolve discordance. TLA showed a positivity rate for MTB detection of 7.1% versus 10.0% for Xpert MTB/RIF. Of a total of 4,547 samples included in the study, 200 isolates were available for comparison to the composite reference. Within a median of 18.4 days, TLA detected RR with 93.0% sensitivity (95% confidence interval [CI], 77.4 to 98.0) and 99.4% specificity (95% CI, 96.7 to 99.9) versus 62.5% (95% CI, 42.7 to 78.8) and 99.3% (95% CI, 96.2 to 99.9) for Xpert MTB/RIF. Eight isolates, 28.6% of all RR-confirmed isolates, carried the I491F mutation, all detected by TLA. TLA also correctly identified 183 of the 184 ofloxacin-susceptible isolates (99.5% specificity; 95% CI, 97.0 to 99.9). In field conditions, TLA rapidly detects RR, and in this specific setting, it contributed to detection of additional RR patients over Xpert MTB/RIF, mainly but not exclusively due to I491F. TLA also accurately excluded fluoroquinolone resistance.Recent emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) coharboring bla KPC-2 and pLVPK-like virulence plasmids represented a novel clinical challenge. In the present study, we characterized a bla KPC-2 and virulence hybrid plasmid, designated pCRHV-C2244, from a clinical ST11-K64 CRKP strain. pCRHV-C2244 was non-self-transmissible due to incomplete conjugative elements but mobilizable together with a conjugative helper. Enhanced virulence and stable maintenance without significant fitness loss in its original host were confirmed in vitro and in vivo.Pyrazinamide (PZA) is a widely used antitubercular chemotherapeutic. Typically, PZA resistance (PZA-R) emerges in Mycobacterium tuberculosis strains with existing resistance to isoniazid and rifampin (i.e., multidrug resistance [MDR]) and is conferred by loss-of-function pncA mutations that inhibit conversion to its active form, pyrazinoic acid (POA). PZA-R departing from this canonical scenario is poorly understood. Here, we genotyped pncA and purported alternative PZA-R genes (panD, rpsA, and clpC1) with long-read sequencing of 19 phenotypically PZA-monoresistant isolates collected in Sweden and compared their phylogenetic and genomic characteristics to a large set of MDR PZA-R (MDRPZA-R) isolates. We report the first association of ClpC1 mutations with PZA-R in clinical isolates, in the ClpC1 promoter (clpC1p -138) and the N terminus of ClpC1 (ClpC1Val63Ala). Mutations have emerged in both these regions under POA selection in vitro, and the N-terminal region of ClpC1 has been implicated further, through its POA-dependent efficacy in PanD proteolysis. ClpC1Val63Ala mutants spanned 4 Indo-Oceanic sublineages. Indo-Oceanic isolates invariably harbored ClpC1Val63Ala and were starkly overrepresented (odds ratio [OR] = 22.2, P less then 0.00001) among PZA-monoresistant isolates (11/19) compared to MDRPZA-R isolates (5/80). The genetic basis of Indo-Oceanic isolates' overrepresentation in PZA-monoresistant tuberculosis (TB) remains undetermined, but substantial circumstantial evidence suggests that ClpC1Val63Ala confers low-level PZA resistance. Our findings highlight ClpC1 as potentially clinically relevant for PZA-R and reinforce the importance of genetic background in the trajectory of resistance development.