Benjaminberger2878

Z Iurium Wiki

Verze z 17. 9. 2024, 21:42, kterou vytvořil Benjaminberger2878 (diskuse | příspěvky) (Založena nová stránka s textem „This cloak used the metamaterials mirrors to adjust the reflected angle, so that the outgoing electromagnetic wave does not change direction, thereby achie…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

This cloak used the metamaterials mirrors to adjust the reflected angle, so that the outgoing electromagnetic wave does not change direction, thereby achieving the cloaking effect.Image resolution is one of the most important performance specifications of aerial display techniques. However, there is no standard method for evaluating the aerial image resolution. In this paper, we propose a method for measuring the modulation transfer function (MTF) of an aerial imaging system based on the slanted knife edge method. We hypothesize that aerial images have a different blur function from standard camera images. In order to explore this, we simulate blurred slanted knife edge images by convolving two types of blur functions. Furthermore, the MTF curves of the aerial image formed using different retro-reflectors are compared using the proposed method.We propose an electro-optic mode-selective switch based on cascaded three-dimensional lithium-niobate waveguide directional couplers fabricated with a single-step annealed proton-exchange process. To compensate for discrepancies due to uncertainties in the fabrication process, we develop a post-tuning technique to improve the performance of the coupler by means of depositing a layer of titanium oxide (TiO2) onto one of the waveguides of the coupler. see more By integrating two cascaded dissimilar directional couplers, we experimentally demonstrate switchable (de)multiplexing of the LP01, LP11a, and LP11b modes, where the LP11a mode can be switched at an efficiency over 75% from 1530 nm to 1612 nm with an applied voltage varying between -9 V and +30 V, and the LP11b mode can be switched at an efficiency higher than 90% from 1534 nm to 1577 nm with an applied voltage varying between -21 V to 0 V. The switching times are 230-300 ns. Our proposed waveguide platform could be employed to develop advanced switches for applications in areas where high-speed switching of spatial modes is required, such as reconfigurable mode-division-multiplexing communication.Coherent beam combination (CBC) is a promising technology for achieving several hundred petawatts and even EW-level lasers. However, the measurement of the synchronization error and the time jitter of CBC is one of key technical issues, especially in the few-cycle PW-level laser facilities. In this paper, we demonstrate that the absolute time delay (ATD) and the relative time delay (RTD) for a tiled-aperture CBC can simultaneously be measured by using the double-humped spectral beam interferometry. The experimental study also was demonstrated. A root-mean-square deviation of approximately λ/38 (70 as) and a combining efficiency of 87.3% at 1 Hz closed feedback loop was obtained, respectively. Due to the wide adjustment range and a vast resisting beam energy disturbance capacity, this technique provide an effective and practical solution for measuring simultaneously the ATD and the RTD in the few-cycle PW-level laser pulses CBC.We investigate here terahertz enhancement effects arising from micrometer and nanometer structured electrode features of photoconductive terahertz emitters. Nanostructured electrode based emitters utilizing the palsmonic effect are currently one of the hottest topics in the research field. We demonstrate here that even in the absence of any plasmonic resonance with the pump pulse, such structures can improve the antenna effect by enhancing the local d.c. electric field near the structure edges. Utilizing this effect in Hilbert-fractal and grating-like designs, enhancement of the THz field of up to a factor of ∼ 2 is observed. We conclude that the cause of this THz emission enhancement in our emitters is different from the earlier reported plasmonic-electrode effect in a similar grating-like structure. In our structure, the proximity of photoexcited carriers to the electrodes and local bias field enhancement close to the metallization cause the enhanced efficiency. Due to the nature of this effect, the THz emission efficiency is almost independent of the pump laser polarization. Compared to the plasmonic effect, these effects work under relaxed device fabrication and operating conditions.We report on electrically driven InP-based photonic-crystal surface-emitting lasers (PCSELs), which possess a deep-air-hole photonic crystal (PC) structure underneath an active region formed by metal-organic vapor-phase-epitaxial (MOVPE) regrowth. Single-mode continuous-wave (CW) lasing operation in 1.3-μm wavelength is successfully achieved at a temperature of 15°C. It is shown that the enhancement of lateral growth during the MOVPE regrowth process of air holes enables the formation of deep air holes with an atomically flat and thin overlayer, whose thickness is less than 100 nm. A threshold current of 120 mA (threshold current density = 0.68 kA/cm2) is obtained in a device with a diameter of 150 μm. A doughnut-like far-field pattern with the narrow beam divergence of less than 1° is observed. Strong optical confinement in the PC structure is revealed from measurements of the photonic band structure, and this strong optical confinement leads to the single-mode CW lasing operation with a low threshold current density.A novel iterative algorithm is proposed for sparse-view cone beam computed tomography (CBCT) reconstruction based on the weighted Schatten p-norm minimization (WSNM). By using the half quadratic splitting, the sparse-view CBCT reconstruction task is decomposed into two sub-problems that can be solved through alternating iteration simple reconstruction and image denoising. The WSNM that fits well with the low-rank hypothesis of CBCT data is introduced to improve the denoising sub-problem as a regularization term. The experimental results based on the digital brain phantom and clinical CT data indicated the advantages of the proposed algorithm in both structural information preservation and artifacts suppression, which performs better than the classical algorithms in quantitative and qualitative evaluations.Photonic-chip based TIRF illumination has been used to demonstrate several on-chip optical nanoscopy methods. The sample is illuminated by the evanescent field generated by the electromagnetic wave modes guided inside the optical waveguide. In addition to the photokinetics of the fluorophores, the waveguide modes can be further exploited for introducing controlled intensity fluctuations for exploitation by techniques such as super-resolution optical fluctuation imaging (SOFI). However, the problem of non-uniform illumination pattern generated by the modes contribute to artifacts in the reconstructed image. To alleviate this problem, we propose to perform Haar wavelet kernel (HAWK) analysis on the original image stack prior to the application of (SOFI). HAWK produces a computational image stack with higher spatio-temporal sparsity than the original stack. In the case of multimoded non-uniform illumination patterns, HAWK processing breaks the mode pattern while introducing spatio-temporal sparsity, thereby differentially affecting the non-uniformity of the illumination.

Autoři článku: Benjaminberger2878 (Hanley Franklin)