Barbourfreeman0113
In order to design a water-saving and high-yield maize planting model suitable for semiarid areas, we conducted trials by combining supplementary irrigation with different planting densities. Three planting densities (L 52,500, M 75,000, and H 97,500 plants ha-1) and four supplementary irrigation modes (NI no irrigation; IV 375 m3 ha-1 during the 11-leaf stage; IS 375 m3 ha-1 in the silking stage; and IVS 375 m3 ha-1 during both stages) were tested. The irrigation treatments significantly increased the leaf relative water content, but the high planting density significantly decreased the relative water content during the silking and filling stages. After supplementary irrigation during the 11-leaf stage, IV and IVS significantly increased the photosynthetic capacity, but decreased the leaf water use efficiency. IS and IVS significantly increased the photosynthetic capacity after supplementary irrigation in the silking stage over two years. During the filling stage, IV, IS, and IVS increased the two-year average net photosynthetic rate by 17.0%, 27.2%, and 30.3%, respectively. The intercellular CO2 concentration increased as the density increased, whereas the stomatal conductance, transpiration rate, net photosynthetic rate, and leaf water use efficiency decreased, and the high planting density significantly reduced the leaf photosynthetic capacity. The highest grain yield was obtained using the IVS treatment under the medium planting density, but it did not differ significantly from that with the IS treatment. Furthermore, the IVS treatment used two times more water than the IS treatment. Thus, the medium planting density combined with supplementary irrigation during the silking stage was identified as a suitable water-saving planting model to improve the photosynthetic capacity and grain yield, and to cope with drought and water shortages in semiarid regions.Master regulator genes (MRGs) have become a hot topic in recent decades. They not only affect the development of tissue and organ systems but also play a role in other signal pathways by regulating additional MRGs. Because a MRG can regulate the concurrent expression of several genes, its mutation often leads to major diseases. Moreover, the occurrence of many tumors and cardiovascular and nervous system diseases are closely related to MRG changes. With the development in omics technology, an increasing amount of investigations will be directed toward MRGs because their regulation involves all aspects of an organism's development. This review focuses on the definition and classification of MRGs as well as their influence on disease regulation.
The submandibular glands, as major salivary glands, participate in rumen digestion in goats. Sialic acid, lysozyme, immunoglobulin A (IgA), lactoferrin and other biologically active substances secreted in the submandibular glands were reported in succession, which suggests that the submandibular gland may have immune functions in addition to participating in digestion. The aim of this study was to map the expression profile of differentially expressed genes (DEGs) at three different stages by transcriptome sequencing, screen immune-related genes and pathways by bioinformatics methods, and predict the immune function of submandibular glands at different developmental stages.
Nine submandibular gland tissue samples were collected from groups of 1-month-old kids, 12-month-old adolescent goats and 24-month-old adult goats (3 samples from each group), and high-throughput transcriptome sequencing was conducted on these samples. The DEGs among the three stages were screened and analysed. Key genes and signallingbmandibular glands may be important immunological organs during the growth process of goats and that the immune function of these glands gradually weakens with age up to 12 months but remains relatively stable after 12 months of age. Overall, this study will improve our understanding of transcriptional regulation related to goat submandibular gland immune function.Breast cancer is one of the most common malignant tumors among women worldwide and has a high morbidity and mortality. This research aimed to identify hub genes and small molecule drugs for breast cancer by integrated bioinformatics analysis. After downloading multiple gene expression datasets from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database, 283 overlapping differentially expressed genes (DEGs) significantly enriched in different cancer-related functions and pathways were obtained using LIMMA, VennDiagram and ClusterProfiler packages of R. We then analyzed the topology of protein-protein interaction (PPI) network with overlapping DEGs and further obtained six hub genes (RRM2, CDC20, CCNB2, BUB1B, CDK1, and CCNA2) from the network via STRING and Cytoscape. Subsequently, we conducted genes expression verification, genetic alterations evaluation, immune infiltration prediction, clinicopathological parameters analysis, identification of transcriptional and post-transcriptional regulatory molecules, and survival analysis for these hub genes. Meanwhile, 29 possible drug candidates (e.g., Cladribine, Gallium nitrate, Alvocidib, 1β-hydroxyalantolactone, Berberine hydrochloride, Nitidine chloride) were identified from the DGIdb database and the GSE85871 dataset. In addition, some transcription factors and miRNAs (e.g., E2F1, PTTG1, TP53, ZBTB16, hsa-miR-130a-3p, hsa-miR-204-5p) targeting hub genes were identified as key regulators in the progression of breast cancer. In conclusion, our study identified six hub genes and 29 potential drug candidates for breast cancer. These findings may advance understanding regarding the diagnosis, prognosis and treatment of breast cancer.The mitochondrial genomes (mitogenomes) of scale insects are less known in comparison to other insects, which hinders the phylogenetic and evolutionary studies of Coccoidea and higher taxa. Herein, the complete mitogenomes of Unaspis yanonensis, Planococcus citri and Ceroplastes rubens were sequenced for Coccoidea. https://www.selleckchem.com/products/BIBR1532.html The 15,220-bp long mitogenome of U. yanonensis contained the typical set of 37 genes including 13 PCGs, 22 tRNA genes and two rRNA genes; the 15,549-bp long mitogenome of P. citri lacked the tRNA gene trnV; the 15,387-bp long mitogenome of C. rubens exhibited several shortened PCGs and lacked five tRNA genes. The mitochondrial gene arrangement of the three mitogenomes was different from other scale insects and Drosophila yakuba. Most PCGs used standard ATN (ATA, ATT, ATC and ATG) start codons and complete TAN (TAA or TAG) termination codons. The ND4L had the highest evolutionary rate but COX1 and CYTB were the lowest. Most tRNA genes had cloverleaf secondary structures, whereas the reduction of dihydrouridine (DHU) arms and TψC arms were detected. Tandem repeats, stem-loop (SL) structures and poly-[TA]n stretch were found in the control regions (CRs) of the three mitogenomes. The phylogenetic analyses using Bayesian inference (BI) and maximum likelihood methods (ML) showed identical results, both supporting the inner relationship of Coccoidea as Coccidae + (Pseudococcidae + Diaspididae).Taphonomic deformation, the distortion of fossils as a result of geological processes, poses problems for the use of geometric morphometrics in addressing paleobiological questions. Signal from biological variation, such as ontogenetic trends and sexual dimorphism, may be lost if variation from deformation is too high. Here, we investigate the effects of taphonomic deformation on geometric morphometric analyses of the abundant, well known Permian therapsid Diictodon feliceps. Distorted Diictodon crania can be categorized into seven typical styles of deformation lateral compression, dorsoventral compression, anteroposterior compression, "saddle-shape" deformation (localized collapse at cranial mid-length), anterodorsal shear, anteroventral shear, and right/left shear. link2 In simulated morphometric datasets incorporating known "biological" signals and subjected to uniform shear, deformation was typically the main source of variance but accurate "biological" information could be recovered in most cases. However, in distorted specimens, so we recommend use of species-level means in higher-level analyses when possible.
Many scholarly journals have established their own data-related policies, which specify their enforcement of data sharing, the types of data to be submitted, and their procedures for making data available. However, except for the journal impact factor and the subject area, the factors associated with the overall strength of the data sharing policies of scholarly journals remain unknown. This study examines how factors, including impact factor, subject area, type of journal publisher, and geographical location of the publisher are related to the strength of the data sharing policy.
From each of the 178 categories of the Web of Science's 2017 edition of
, the top journals in each quartile (Q1, Q2, Q3, and Q4) were selected in December 2018. Of the resulting 709 journals (5%), 700 in the fields of life, health, and physical sciences were selected for analysis. Four of the authors independently reviewed the results of the journal website searches, categorized the journals' data sharing policies, and extract strong policy in the associated journals. Future research needs to explore the factors associated with varied degrees in the strength of a data sharing policy as well as more diverse characteristics of journals related to the policy strength.The MPF and MAPK genes play crucial roles during oocyte maturation processes. However, the pattern of MPF and MAPK gene expression induced by melatonin (MT) and its correlation to oocyte maturation quality during the process of porcine oocyte maturation in vitro remains unexplored. To unravel it, in this study, we cultured the porcine oocytes in maturation medium supplemented with 0, 10-6, 10-9, and 10-12 mol/L melatonin. Later, we analyzed the MPF and MAPK gene expression levels by RT-PCR and determined the maturation index (survival and maturation rate of oocytes). The GSH content in the single oocyte, and cytoplasmic mitochondrial maturation distribution after porcine oocyte maturation in vitro was also evaluated. link3 We also assessed the effects of these changes on parthenogenetic embryonic developmental potential. The oocytes cultured with 10-9mol/L melatonin concentration showed higher oocyte maturation rate, and MPF and MAPK genes expression levels along with better mitochondrial distribution than the 0, 10-6, and 10-12 mol/L melatonin concentrations (p less then 0.05). No significant difference was observed in the survival rates when the oocytes were cultured with different melatonin concentrations. The expression of the MPF gene in the oocytes cultured with 10-6 mol/L melatonin was higher than with 10-12 and 0 mol/L melatonin, and the expression of the MAPK gene in 10-6 and 10-12 group was higher than the control (p less then 0.05). As far as the embryonic developmental potential is concerned, the cleavage and blastocyst rate of oocytes cultured with 10-6 and 10-9 mol/L melatonin was significantly higher than the 10-12 mol/L melatonin and control. In conclusion, 10-9-10-6 mol/L melatonin significantly induced the MPF and MAPK gene expression; besides, it could also be correlated with GSH content of single oocyte, mitochondrial maturation distribution, and the first polar body expulsion. These changes were also found to be associated with parthenogenetic embryo developmental potential in vitro.