Zachoheath4316
Glioblastoma Multiforme (GBM) is a highly invasive primary brain tumour characterized by chemo- and radio-resistance and poor overall survival. GBM can present an aberrant functionality of p53, caused by the overexpression of the murine double minute 2 protein (MDM2) and its analogue MDM4, which may influence the response to conventional therapies. Moreover, tumour resistance/invasiveness has been recently attributed to an overexpression of the chemokine receptor CXCR4, identified as a pivotal mediator of glioma neovascularization. Notably, CXCR4 and MDM2-4 cooperate in promoting tumour invasion and progression. Although CXCR4 actively promotes MDM2 activation leading to p53 inactivation, MDM2-4 knockdown induces the downregulation of CXCR4 gene transcription. Our study aimed to assess if the CXCR4 signal blockade could enhance glioma cells' sensitivity to the inhibition of the p53-MDMs axis. Rationally designed inhibitors of MDM2/4 were combined with the CXCR4 antagonist, AMD3100, in human GBM cells and GBM stem-like cells (neurospheres), which are crucial for tumour recurrence and chemotherapy resistance. The dual MDM2/4 inhibitor RS3594 and the CXCR4 antagonist AMD3100 reduced GBM cell invasiveness and migration in single-agent treatment and mainly in combination. AMD3100 sensitized GBM cells to the antiproliferative activity of RS3594. It is noteworthy that these two compounds present synergic effects on cancer stem components RS3594 inhibited the growth and formation of neurospheres, AMD3100 induced differentiation of neurospheres while enhancing RS3594 effectiveness preventing their proliferation/clonogenicity. These results confirm that blocking CXCR4/MDM2/4 represents a valuable strategy to reduce GBM proliferation and invasiveness, acting on the stem cell component too.As the critical driving force for chronic myeloid leukemia (CML), BCR gene fused ABL kinase has been extensively explored as a validated target of drug discovery. Although imatinib has achieved tremendous success as the first-line treatment for CML, the long-term application ultimately leads to resistance, primarily via various acquired mutations occurring in the BCR-ABL kinase. Although dasatinib and nilotinib have been approved as second-line therapies that could overcome some of these mutants, the most prevalent gatekeeper T315I mutant remains unconquered. Here, we report a novel type II kinase inhibitor, CHMFL-48, that potently inhibits the wild-type BCR-ABL (wt) kinase as well as a panel of imatinib-resistant mutants, including T315I, F317L, E255K, Y253F, and M351T. CHMFL-48 displayed great inhibitory activity against ABL wt (IC50 1 nM, 70-fold better than imatinib) and the ABL T315I mutant (IC50 0.8 nM, over 10,000-fold better than imatinib) in a biochemical assay and potently blocked the autophosphorylation of BCR-ABL wt and BCR-ABL mutants in a cellular context, which further affected downstream signalling mediators, including signal transducer and activator of transcription 5 (STAT5) and CRK like proto-oncogene (CRKL), and led to the cell cycle progression blockage as well as apoptosis induction. CHMFL-48 also exhibited great anti-leukemic efficacies in vivo in K562 cells and p210-T315I-transformed BaF3 cell-inoculated murine models. This discovery extended the pharmacological diversity of BCR-ABL kinase inhibitors and provided more potential options for anti-CML therapies.
Metabolic syndrome (MetS) is characterized by a cluster of interconnected risk factors -hyperglycemia, dyslipidemia, hypertension and obesity- leading to an increased risk of cardiovascular events. Small extracellular vesicles (sEVs) can be considered as new biomarkers of different pathologies, and they are involved in intercellular communication. Here, we hypothesize that sEVs are implicated in MetS-associated endothelial dysfunction.
Circulating sEVs of non-MetS (nMetS) subjects and MetS patients were isolated from plasma and characterized. Thereafter, sEV effects on endothelial function were analyzed by measuring nitric oxide (NO) and reactive oxygen species (ROS) production, and mitochondrial dynamic proteins on human endothelial aortic cells (HAoECs).
Circulating levels of sEVs positively correlated with anthropometric and biochemical parameters including visceral obesity, glycaemia, insulinemia, and dyslipidemia. Treatment of HAoECs with sEVs from MetS patients decreased NO production through the ivation by sEVs provides a link between the endothelial dysfunction and metabolic disturbances described in MetS.
The physiological regulation and contribution of the multiple phosphorylation sites of insulin receptor substrate 1 (IRS1) to the pathogenesis of insulin resistance is unknown. Our aims were to map the phosphorylated motifs of IRS1 in skeletal muscle from people with normal glucose tolerance (NGT; n = 11) or type 2 diabetes mellitus (T2DM; n = 11).
Skeletal muscle biopsies were obtained under fasted conditions or during a euglycemic clamp and IRS1 phosphorylation sites were identified by mass spectrometry.
We identified 33 phosphorylation sites in biopsies from fasted individuals, including 2 previously unreported sites ([Ser393] and [Thr1017]). In men with NGT and T2DM, insulin increased phosphorylation of 5 peptides covering 10 serine or threonine sites and decreased phosphorylation of 6 peptides covering 9 serine, threonine or tyrosine sites. Insulin-stimulation increased phosphorylation of 2 peptides, and decreased phosphorylation of 2 peptides only in men with NGT. Insulin increased phosphorylation of 2 peptides only in men with T2DM.
Despite severe skeletal muscle insulin resistance, the pattern of IRS1 phosphorylation was not uniformly altered in T2DM. Our results contribute to the evolving understanding of the physiological regulation of insulin signaling and complement the comprehensive map of IRS1 phosphorylation in T2DM.
Despite severe skeletal muscle insulin resistance, the pattern of IRS1 phosphorylation was not uniformly altered in T2DM. Our results contribute to the evolving understanding of the physiological regulation of insulin signaling and complement the comprehensive map of IRS1 phosphorylation in T2DM.
Cholesterol gallstone disease (CGD) is a common gastrointestinal disease. Liraglutide, an analogue of glucagon-like peptide 1, has been approved to treat type 2 diabetes. Clinical studies have suggested a potential role of liraglutide in CGD.
Mice were subcutaneously injected with liraglutide, then fed a lithogenic diet. Bile duct cannulation was performed to collect bile output in mice. Intestinal-specific ablation or pharmacological inhibition of farnesoid X receptor (FXR) was used to study its functions in CGD.
Liraglutide could protect mice against CGD. Liraglutide treatment increased the biliary concentration of cholesterol, phospholipids and bile acids and thereby decreased the cholesterol saturation index. The resistance to CGD conferred by liraglutide is likely a result of increased bile acid synthesis and efficient bile acid transport. The expression of a key bile acid synthetic enzyme, Cyp7a1, was significantly increased in liraglutide-treated mice. The increased expression of Cyp7a1 resulted a novel way for treating or preventing cholesterol gallstones in individuals with high risk of CGD.
To investigate the roles and mechanisms of C. selleck products trachomatis glycogen synthase (GlgA) in regulating the inflammatory response in THP-1 cells.
In this work, after THP-1 cells were stimulated with GlgA, transcript and protein expression levels were measured by qRT-PCR and ELISA, respectively. Western blotting and immunofluorescence were used to determine the signaling pathway involved in the inflammatory mechanism.
GlgA elicited the expression of interleukin-8 (IL-8), interleukin-1beta (IL-1β) and tumor necrosis factor alpha (TNF-α) in THP-1 cells, and the blockade of TLR2 and TLR4 signaling abrogated the induction of IL-8, TNF-α and IL-1β expression. Similarly, IL-8, IL-1β and TNF-α secretion was reduced by transfection with a dominant negative plasmid (pDeNyhMyD88). Moreover, Western blotting and immunofluorescence experiments further validated that MAPKs and NF-кB signaling are involved in the transcription and translation of these cytokines. Treatment of the cells with ERK and JNK inhibitors dramatically attenuated the induction of IL-8, IL-1β and TNF-α.
These results suggest that GlgA contributes to inflammation during C. trachomatis infection via the TLR2, TLR4 and MAPK/NF-кB pathways, which may enhance our understanding of the pathogenesis of C. trachomatis.
These results suggest that GlgA contributes to inflammation during C. trachomatis infection via the TLR2, TLR4 and MAPK/NF-кB pathways, which may enhance our understanding of the pathogenesis of C. trachomatis.
The involvement of several microRNAs (miRNAs) in osteogenic differentiation has been indicated recently. Also, exosomes, derived from different cells, could shuttle specific miRNAs to other cell systems. Nevertheless, the effect and mechanism of microRNA-935 (miR-935)-containing exosomes in osteoblasts remain basically unclear. The current work was set to inspect the relevance of bone marrow mesenchymal stem cells (BMSCs)-derived exosomes (BMSC-exo) carrying miR-935 to osteoporotic rats.
The extracted BMSCs and purchased osteoblasts were cultured, followed by exosome isolation and identification. After cell grouping, osteoblasts were co-cultured with BMSCs. CCK-8, alizarin red staining as well as ALP staining were performed to detect osteoblast proliferation and activity. The binding connection between miR-935 and signal transducer and activator of transcription 1 (STAT1) was measured by dual-luciferase reporter gene assays. The expression profiles of miR-935, STAT1 and osteoblast-related proteins were assessed by RT-qPCR and Western blot. A rat model with osteoporosis was induced, and the BMD, BV/TV, Tb.N, Tb.Th and Tb.Sp values in rat bone tissues were observed by Micro-CT.
BMSC-exo inhibited STAT1 levels by the delivery of miR-935 into osteoblasts, while STAT1 silencing promoted ALP activity in osteoblasts and mineralized nodules. STAT1 was identified as a target gene of miR-935. Moreover, in vivo experiments showed that in ovariectomized rats, silencing of miR-935 significantly reduced BMD, BV/TV, Tb.N, Tb.Th and increased Tb.Sp.
BMSC-exo carry miR-935 to promote osteoblast proliferation and differentiation through targeting STAT1.
BMSC-exo carry miR-935 to promote osteoblast proliferation and differentiation through targeting STAT1.
Enterovirus 71 (EV71) is one of the main viruses that cause hand-foot-mouth disease; however, its pathogenic mechanism remains unclear. This study characterized the relationship between EV71 infection and autophagy in vivo and explored the molecular mechanism underlying EV71-induced autophagy.
A mouse model of EV71 infection was prepared by intraperitoneally injecting one-day-old BALB/c suckling mice with 30μL/g of EV71 virus stock solution for 3days. The behavior, fur condition, weight, and mice mortality were monitored, and disease scores were calculated. The pathological damage to the brain, lung, and muscle tissues after the viral infection was assessed by hematoxylin and eosin staining. Western blot and immunofluorescence analyses were used to detect the expression levels of viral protein 1, Beclin-1, microtubule-associated protein light chain 3B, mammalian target of rapamycin (mTOR), phosphorylated (p)-mTOR, extracellular signal-regulated protein kinase (ERK) 1/2, and p-ERK.
EV71 infection can trigger autophagy in the brains, lungs, and muscles of infected mice.