Kragborg4041

Z Iurium Wiki

Verze z 16. 9. 2024, 19:48, kterou vytvořil Kragborg4041 (diskuse | příspěvky) (Založena nová stránka s textem „In this paper, we propose an embedded AI system for federated learning that can be composed flexibly with the AI core depending on the application. In orde…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

In this paper, we propose an embedded AI system for federated learning that can be composed flexibly with the AI core depending on the application. In order to realize the proposed system, we designed a controller for multiple AI cores and implemented it on a field-programmable gate array (FPGA). The operation of the designed controller was verified through image and speech applications, and the performance was verified through a simulator.As an important nonlinear optical material, potassium dihydrogen phosphate (KDP) crystal is used in high-power laser beams as the core element of inertial confinement fusion. It is the most general method of single point diamond fly-cutting (SPDF) to produce high precision and crack-free KDP surfaces. Nevertheless, the cutting mechanism of such material remains unclear, and therefore needs further analysis. Firstly, the stress field, cutting force and cutting temperature under different working conditions are calculated by a KDP crystal cutting simulation model. Then, the rules and the cause of change and interaction mechanisms of force and temperature are analyzed by comparing the measurement experiments with simulations. Furthermore, the causes of chip formation and micro-cracks on the machined surface are analyzed based on thermo-mechanical coupling and chip morphology. The conclusion can be deduced Although the temperature has not reached the phase transition temperature during the finishing process, under high cutting speeds and large unformed chip thickness, such as semi-finishing and roughing, the temperature can reach up to 180 °C or higher, and KDP crystals are very likely to phase transition-chip morphology also verifies this phenomenon.Capillary self-alignment technique can achieve highly accurate and fast alignment of micro components. Capillary self-alignment technique relies on the confinement of liquid droplets at receptor sites where hydrophobic-hydrophilic patterns are widely used. This paper reports a low-cost microsecond pulse laser micromachining method for fabrication of super hydrophilic-super hydrophobic grooves as receptor sites for capillary self-alignment of microfibers. We investigated the influence of major manufacturing parameters on groove sizes and wetting properties. The effects of the width (20 µm-100 µm) and depth (8 µm-36 µm) of the groove on the volume of water droplet contained inside the groove were also investigated. We show that by altering scanning speed, using a de-focused laser beam, we can modify the wetting properties of the microgrooves from 10° to 120° in terms of the contact angle. We demonstrated that different types of microfibers including natural and artificial microfibers can self-align to the size matching super hydrophilic-super hydrophobic microgrooves. The results show that super hydrophilic-super hydrophobic microgrooves have great potential in microfiber micromanipulation applications such as natural microfiber categorization, fiber-based microsensor construction, and fiber-enforced material development.An ultrasonic motor as a kind of smart material drive actuator has potential in robots, aerocraft, medical operations, etc. The size of the ultrasonic motor and complex circuit limits the further application of ultrasonic motors. In this paper, a single-phase driven ultrasonic motor using Bending-Bending vibrations is proposed, which has advantages in structure miniaturization and circuit simplification. Hybrid bending vibration modes were used, which were excited by only single-phase voltage. The working principle based on an oblique line trajectory is illustrated. The working bending vibration modes and resonance frequencies of the bending vibration modes were calculated by the finite element method to verify the feasibility of the proposed ultrasonic motor. Additionally, the output performance was evaluated by experiment. This paper provides a single-phase driven ultrasonic motor using Bending-Bending vibrations, which has advantages in structure miniaturization and circuit simplification.The fast and precise fabrication of micro-devices based on single flakes of novel 2D materials and stacked heterostructures is vital for exploration of novel functionalities. In this paper, we demonstrate a fast high-resolution contact mask lithography through a simple upgrade of metallographic optical microscope. Suggested kit for the micromask lithography is compact and easily compatible with a glove box, thus being suitable for a wide range of air-unstable materials. The shadow masks could be either ordered commercially or fabricated in a laboratory using a beam lithography. The processes of the mask alignment and the resist exposure take a few minutes and provide a micrometer resolution. With the total price of the kit components around USD 200, our approach would be convenient for laboratories with the limited access to commercial lithographic systems.This editorial is for collating the Special Issue on micro-manufacturing and applications, based on stringently selected papers presented to the editorial board of this Special Issue [...].In this work, an investigation of the properties of nanoscale-thick Ti/TiN, TiN, W, WN layers as diffusion barriers between Si and Al is carried out in view of Si-based electronic applications. Heat treatments were performed on the samples to activate interdiffusion between Si and Al. Changing annealing time and temperature, each sample was morphologically characterized by scanning electron microscopy and atomic force microscopy and compositionally characterized by Rutherford backscattering analysis. The aim is to evaluate the efficiency of the layers as diffusion barriers between Si and Al and, at the same time, to evaluate the surface morphological changes upon annealing processes.Diabetic retinopathy (DR) is a frequent complication of diabetes and, through its vision-threatening complications, i.e., macular edema and proliferative retinopathy, may lead to blindness. It is, therefore, of major relevance to identify the presence of retinopathy in diabetic patients and, when present, to identify the eyes that have the greatest risk of progression and greatest potential to benefit from treatment. In the present paper, we suggest the development of a simple to use alternative to the Early Treatment Diabetic Retinopathy Study (ETDRS) grading system, establishing disease severity as a necessary step to further evaluate and categorize the different risk factors involved in the progression of diabetic retinopathy. It needs to be validated against the ETDRS classification and, ideally, should be able to be performed automatically using data directly from the examination equipment without the influence of subjective individual interpretation. We performed the characterization of 105 eyes from 105 patients previously classified by ETDRS level by a Reading Centre using a set of rules generated by a decision tree having as possible inputs a set of metrics automatically extracted from Swept-source Optical Coherence Tomography (SS-OCTA) and Spectral Domain- OCT (SD-OCT) measured at different localizations of the retina. When the most relevant metrics were used to derive the rules to perform the organization of the full pathological dataset, taking into account the different ETDRS grades, a global accuracy equal to 0.8 was obtained. In summary, it is now possible to envision an automated classification of DR progression using noninvasive methods of examination, OCT, and SS-OCTA. Using this classification to establish the severity grade of DR, at the time of the ophthalmological examination, it is then possible to identify the risk of progression in severity and the development of vision-threatening complications based on the predominant phenotype.In this paper, we discuss the role of particle therapy-a novel radiation therapy (RT) that has shown rapid progress and widespread use in recent years-in multidisciplinary treatment. find more Three types of particle therapies are currently used for cancer treatment proton beam therapy (PBT), carbon-ion beam therapy (CIBT), and boron neutron capture therapy (BNCT). PBT and CIBT have been reported to have excellent therapeutic results owing to the physical characteristics of their Bragg peaks. Variable drug therapies, such as chemotherapy, hormone therapy, and immunotherapy, are combined in various treatment strategies, and treatment effects have been improved. BNCT has a high dose concentration for cancer in terms of nuclear reactions with boron. BNCT is a next-generation RT that can achieve cancer cell-selective therapeutic effects, and its effectiveness strongly depends on the selective 10B accumulation in cancer cells by concomitant boron preparation. Therefore, drug delivery research, including nanoparticles, is highly desirable. In this review, we introduce both clinical and basic aspects of particle beam therapy from the perspective of multidisciplinary treatment, which is expected to expand further in the future.Benign uterine disorders, including uterine fibroids (UF) and adenomyosis (AM), can impact the life quality and fertility of women of reproductive age. Transvaginal ultrasound (TVUS) has long been used for their early identification, but its combined use with elastography seems to improve diagnostic accuracy of UF and AM. Thus, a prospective pilot study was conducted on 79 patients who underwent hysterectomy (25 microscopically diagnosed with AM and 53 with UF), with the aim of assessing the ability of TVUS combined with strain ratio elastography (SE) to accurately diagnose and distinguish UF and AM. Significantly higher mean and maximal strain ratio (SR) values were identified for patients with histologically confirmed AM as opposed to those with UF (p less then 0.001). Diagnostic sensitivity and specificity, calculated in comparison with histology results, were higher for UF than AM. Receiver operating characteristic (ROC) analysis was applied between the two study groups, revealing cutoff values of 7.71 for mean SR and 8.91 for maximal SR, respectively, with good sensitivity and specificity parameters (100% and 96.23%; 96% and 96.23%). Our results support the use of TVUS in combination with SE for the positive and differential diagnosis of UF and AM, through identification of their particular tissue stiffness features.The Sry-related HMG BOX (SOX) gene family encodes transcription factors containing highly conserved high-mobility group domains that bind to the minor groove in DNA. Although some SOX genes are known to be associated with tumorigenesis and cancer progression, their expression and prognostic value have not been systematically studied. We performed multi-omic analysis to investigate the expression of SOX genes in human cancers. Expression and phylogenetic tree analyses of the SOX gene family revealed that the expression of three closely related SOX members, SOX4, SOX11, and SOX12, was increased in multiple cancers. Expression, mutation, and alteration of the three SOX members were evaluated using the Oncomine and cBioPortal databases, and the correlation between these genes and clinical outcomes in various cancers was examined using the Kaplan-Meier, PrognoScan, and R2 database analyses. The genes commonly correlated with the three SOX members were categorized in key pathways related to the cell cycle, mitosis, immune system, and cancer progression in liver cancer and sarcoma.

Autoři článku: Kragborg4041 (Cooney Binderup)