Chencase0675

Z Iurium Wiki

Verze z 16. 9. 2024, 14:12, kterou vytvořil Chencase0675 (diskuse | příspěvky) (Založena nová stránka s textem „strain PCC 6803 imply that this system is conserved among nearly all motile cyanobacteria and provides a mechanism to coordinate polysaccharide secretion a…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

strain PCC 6803 imply that this system is conserved among nearly all motile cyanobacteria and provides a mechanism to coordinate polysaccharide secretion and T4P activity in these organisms. IMPORTANCE Many bacteria, including photosynthetic cyanobacteria, exhibit type IV pili (T4P) driven surface motility. In cyanobacteria, this form of motility facilitates dispersal, phototaxis, the formation of supracellular structures, and the establishment of nitrogen-fixing symbioses with eukaryotes. T4P-powered motility typically requires the deposition of motility-associated polysaccharides, and previous studies indicate that T4P activity and polysaccharide production are intimately linked. However, the mechanism by which these processes are coupled is not well defined. Here, we identified and characterized a DnaK(Hsp70)-type chaperone system that coordinates these two processes in cyanobacteria.Transmission of oral microbiota from mother to infant is a highly relevant and, so far, understudied topic due to lack of mainstream high-throughput methods for the assessment of bacterial diversity at a strain level. In their recent article in mBio, S. Kageyama, M. Furuta, T. Takeshita, J. Ma, et al. (mBio 13e03452-21, 2021, https//doi.org/10.1128/mbio.03452-21) evaluated oral microbial transmission from mothers to their infants by using full-length analysis of the 16S rRNA gene and demonstrated the applicability of this method for assessment of transmission of oral bacteria at the single-nucleotide-difference level. By analyzing different metadata of the mother-infant pairs, they discovered that the presence of maternal oral bacteria was higher in formula-fed infants compared to infants who were breastfed or received mixed feeding. This interesting finding suggests that breastfeeding may prevent early maturation of infant's oral microbiome. The physiological role of this phenomenon still needs to be elucidated.In this study, we investigated the influence of fungal extracellular vesicles (EVs) during biofilm formation and morphogenesis in Candida albicans. Using crystal violet staining and scanning electron microscopy (SEM), we demonstrated that C. albicans EVs inhibited biofilm formation in vitro. By time-lapse microscopy and SEM, we showed that C. albicans EV treatment stopped filamentation and promoted pseudohyphae formation with multiple budding sites. The ability of C. albicans EVs to regulate dimorphism was further compared to EVs isolated from different C. albicans strains, Saccharomyces cerevisiae, and Histoplasma capsulatum. C. albicans EVs from distinct strains inhibited yeast-to-hyphae differentiation with morphological changes occurring in less than 4 h. EVs from S. cerevisiae and H. capsulatum modestly reduced morphogenesis, and the effect was evident after 24 h of incubation. The inhibitory activity of C. albicans EVs on phase transition was promoted by a combination of lipid compounds, which were iden yeast-to-hypha conversion. Here, we demonstrate that fungal EVs are messengers impacting biofilm formation, morphogenesis, and virulence in C. albicans. The major players exported in C. albicans EVs included sesquiterpenes, diterpenes, and fatty acids. The understanding of how C. albicans cells communicate to regulate physiology and pathogenesis can lead to novel therapeutic tools to combat candidiasis.Visceral leishmaniasis is a deadly infectious disease caused by Leishmania donovani, a kinetoplastid parasite for which no licensed vaccine is available. To identify potential vaccine candidates, we systematically identified genes encoding putative cell surface and secreted proteins essential for parasite viability and host infection. We identified a protein encoded by LdBPK_061160 which, when ablated, resulted in a remarkable increase in parasite adhesion to tissue culture flasks. Here, we show that this phenotype is caused by the loss of glycosylphosphatidylinositol (GPI)-anchored surface molecules and that LdBPK_061160 encodes a noncatalytic component of the L. donovani GPI-mannosyltransferase I (GPI-MT I) complex. GPI-anchored surface molecules were rescued in the LdBPK_061160 mutant by the ectopic expression of both human genes PIG-X and PIG-M, but neither gene could complement the phenotype alone. From further sequence comparisons, we conclude that LdBPK_061160 is the functional orthologue of yeast PBN1d on the surface of parasites are involved in host-parasite interactions and have important roles in immune evasion, making vaccine development difficult. One major way in which parasite surface molecules are tethered to the surface is via glycophosphatidylinositol (GPI) anchors; however, the enzymes required for all the biosynthetic steps in these parasites are not known. Here, we identified the enzyme required for an essential step in the GPI anchor-biosynthetic pathway in L. donovani, and we show that while parasites lacking this gene are viable in vitro, they are unable to establish infections in mice, a property we show can be exploited to develop a live genetically attenuated parasite vaccine.Phosphorothioate (PT) modification, a sequence-specific modification that replaces the nonbridging oxygen atom with sulfur in a DNA phosphodiester through the gene products of dndABCDE or sspABCD, is widely distributed in prokaryotes. DNA PT modification functions together with gene products encoded by dndFGH, pbeABCD, or sspE to form defense systems that can protect against invasion by exogenous DNA particles. While the functions of the multiple enzymes in the PT system have been elucidated, the exact role of DndE in the PT process is still obscure. Here, we solved the crystal structure of DndE from the haloalkaliphilic archaeal strain Natronorubrum bangense JCM10635 at a resolution of 2.31 Å. Unlike the tetrameric conformation of DndE in Escherichia coli B7A, DndE from N. bangense JCM10635 exists in a monomeric conformation and can catalyze the conversion of supercoiled DNA to nicked or linearized products. Moreover, DndE exhibits preferential binding affinity to nicked DNA by virtue of the R19- and K23-conuce nicks to supercoiled DNA and exhibits a binding preference for nicked DNA; the nicking is believed to be the initial step for DNA to facilitate the sulfur incorporation.Fusobacterium nucleatum, an anaerobic Gram-negative bacterium frequently found in the human oral cavity and some extra-oral sites, is implicated in several important diseases periodontitis, adverse pregnancy outcomes, and colorectal cancer. To date, how this obligate anaerobe copes with oxidative stress and host immunity within multiple human tissues remains unknown. Here, we uncovered a critical role in this process of a multigene locus encoding a single, fused methionine sulfoxide reductase (MsrAB), a two-component signal transduction system (ModRS), and thioredoxin (Trx)- and cytochrome c (CcdA)-like proteins, which are induced when fusobacterial cells are exposed to hydrogen peroxide. Comparative transcriptome analysis revealed that the response regulator ModR regulates a large regulon that includes trx, ccdA, and many metabolic genes. Cpd 20m clinical trial Significantly, specific mutants of the msrAB locus, including msrAB, are sensitive to reactive oxygen species and defective in adherence/invasion of colorectal epithelial cadherence/invasion of colorectal epithelial cells, and survival in macrophage. Unable to colonize placenta and spread to amniotic fluid, the msrAB mutant failed to induce preterm birth in a murine model.Yellow fever virus (YFV) causes sporadic outbreaks of infection in South America and sub-Saharan Africa. While live-attenuated yellow fever virus vaccines based on three substrains of 17D are considered some of the most effective vaccines in use, problems with production and distribution have created large populations of unvaccinated, vulnerable individuals in areas of endemicity. To date, specific antiviral therapeutics have not been licensed for human use against YFV or any other related flavivirus. Recent advances in monoclonal antibody (mAb) technology have allowed the identification of numerous candidate therapeutics targeting highly pathogenic viruses, including many flaviviruses. Here, we sought to identify a highly neutralizing antibody targeting the YFV envelope (E) protein as a therapeutic candidate. We used human B cell hybridoma technology to isolate mAbs from circulating memory B cells from human YFV vaccine recipients. These antibodies bound to recombinant YFV E protein and recognized at least fmany people in affected areas vulnerable. Here, we sought to isolate an antibody targeting the surface of the virus for possible use in the future as a biologic drug to prevent or treat YFV infection. We isolated naturally occurring antibodies from individuals who had received a YFV vaccine. We created antibodies and tested them. We found that the antibody with the most powerful antiviral activity was a beneficial treatment in two different small-animal models of human infection. These studies identified features of the virus that are recognized by the human immune system and generated a therapeutic antibody candidate that inhibits infection caused by highly virulent strains of YFV.Acinetobacter baumannii has become a major nosocomial pathogen, as it is often multidrug-resistant, which results in infections characterized by high mortality rates. The bacterium achieves high levels of resistance to β-lactam antibiotics by producing β-lactamases, enzymes which destroy these valuable agents. Historically, the carbapenem family of β-lactam antibiotics have been the drugs of choice for treating A. baumannii infections. However, their effectiveness has been significantly diminished due to the pathogen's production of carbapenem-hydrolyzing class D β-lactamases (CHDLs); thus, new antibiotics and inhibitors of these enzymes are urgently needed. Here, we describe a new carbapenem antibiotic, MA-1-206, in which the canonical C6 hydroxyethyl group has been replaced with hydroxymethyl. The antimicrobial susceptibility studies presented here demonstrated that this compound is more potent than meropenem and imipenem against A. baumannii producing OXA-23, the most prevalent CHDL of this pathogen, and ayethyl group of carbapenems by a hydroxymethyl significantly enhances stability against inactivation by the major CHDL of Acinetobacter baumannii, OXA-23. These results provide a novel strategy for designing next-generation, carbapenemase-stable carbapenems to fight multidrug-resistant infections caused by Gram-negative pathogens.Compared to the original ancestral strain of SARS-CoV-2, the Delta variant of concern has shown increased transmissibility and resistance toward COVID-19 vaccines and therapies. However, the pathogenesis of the disease associated with Delta is still not clear. In this study, using K18-hACE2 transgenic mice, we assessed the pathogenicity of the Delta variant by characterizing the immune response following infection. We found that Delta induced the same clinical disease manifestations as the ancestral SARS-CoV-2, but with significant dissemination to multiple tissues, such as brain, intestine, and kidney. Histopathological analysis showed that tissue pathology and cell infiltration in the lungs of Delta-infected mice were the same as in mice infected with the ancestral SARS-CoV-2. Delta infection caused perivascular inflammation in the brain and intestinal wall thinning in K18-hACE2 transgenic mice. Increased cell infiltration in the kidney was observed in both ancestral strain- and Delta-infected mice, with no clear visible tissue damage identified in either group.

Autoři článku: Chencase0675 (Lyon Edvardsen)