Liulopez4334
The metal-support interaction (MSI) has a remarkable effect on the catalytic properties, but how to precisely modulate its degree remains a huge challenge. Herein, polyvinylpyrrolidone (PVP) with three different molecular weights (MWs) (24, 58, and 130 kDa) was used as a capping agent to fabricate Ag nanoparticles (NPs) supported on ZrO2. The physiochemical properties of the catalysts were characterized by X-ray diffraction (XRD), Transmission Electron Microscope (TEM), X-ray Photoelectron Spectroscopy (XPS), and Fourier transform infrared (FT-IR) techniques. The impacts of MSI on the catalytic activity and reaction kinetics for aerobic oxidation of 5-hydroxymethylfurfural (HMF) were investigated. The results showed that the introduction of PVP with various MWs could efficiently tailor the interfacial interactions and charge transfers (CT) among PVP, the support, and Ag NPs, thereby affecting the oxidation activity of HMF. The turnover number (TON) for HMF oxidation decreases in the order of unsupported colloidal Ag clusters > Ag/ZrO2 (58,000) > Ag/ZrO2 (130,000) > Ag/ZrO2 (24,000) > Ag/ZrO2. The reason for this large difference in the catalytic activity for HMF oxidation is that various MWs of PVP result in a change of MSI, thereby facilitating CT from PVP to Ag metal sites. This study offers a new strategy for modulating MSI by varying the MW of capping agents, thereby tuning the catalytic properties in the oxidation of HMF.The combination of induced pluripotent stem cell (iPSC) technology and 3D cell culture creates a unique possibility for the generation of organoids that mimic human organs in in vitro cultures. The use of iPS cells in organoid cultures enables the differentiation of cells into dopaminergic neurons, also found in the human midbrain. However, long-lasting organoid cultures often cause necrosis within organoids. In this work, we present carbon fibers (CFs) for medical use as a new type of scaffold for organoid culture, comparing them to a previously tested copolymer poly-(lactic-co-glycolic acid) (PLGA) scaffold. learn more We verified the physicochemical properties of CF scaffolds compared to PLGA in improving the efficiency of iPSC differentiation within organoids. The physicochemical properties of carbon scaffolds such as porosity, microstructure, or stability in the cellular environment make them a convenient material for creating in vitro organoid models. Through screening several genes expressed during the differentiation of organoids at crucial brain stages of development, we found that there is a correlation between PITX3, one of the key regulators of terminal differentiation, and the survival of midbrain dopaminergic (mDA) neurons and tyrosine hydroxylase (TH) gene expression. This makes organoids formed on carbon scaffolds an improved model containing mDA neurons convenient for studying midbrain-associated neurodegenerative diseases such as Parkinson's disease.The purpose of the present study was to provide an empirical verification of the Circle of Discontent with an assessment of its relationship to restrained and uncontrolled eating among children and adolescents. This study examined whether our results confirm a new hypothesized model. The total sample comprised 282 children and adolescents (148 girls and 134 boys; 141 participants with normal body weight and 141 with obesity). The mean age was 12.23 years (SD = 2.80), and the average BMI (body mass index) was 23.29 kg/m2 (SD = 6.27). The following were used Positive and Negative Affect Scale for Children, Children's Body Image Scale, Figure Rating Scale, Three-Factor Eating Questionnaire and Eating Disorders in Youth. The obtained values of the model fit indices proved the goodness of fit. Our findings show that obesity accompanies body dissatisfaction and uncontrolled and restrictive eating. Moreover, the higher the level of restrictive eating, the lower the level of uncontrolled eating. The relationships between body dissatisfaction, negative affect and restrictive eating, as well as that between uncontrolled eating and high-energy consumption, are significant and positive. Other relationships are non-significant. The above-mentioned relationships established in the Circle of Discontent, as well as relationships of restrained and uncontrolled eating with variables described in the circle, were confirmed. Based on our results, preventive strategies and psychological interventions can be created and may include changes in body image, eating behaviors and emotional functioning.Bitumen is one of the most important materials used in roads. During asphalt pavement construction, workers can be affected by emissions, such as volatile organic compounds (VOCs), when bitumen is heated. Therefore, it is crucial to correctly identify and measure VOCs. This paper presents a novel, promising method to determine VOC emissions. The proposed method offers a way to standardize routine measurements on a lab scale, enabling reliable comparison across bitumen types and their modifications or additives. A proton-transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) was used to monitor VOC emissions from commercial unmodified bitumen and crumb rubber modified bitumen (CRMB) with heating of up to 180 °C. Results confirmed that the temperature range of 160-180 °C is a highly influential factor for VOC emissions from heated commercial bitumen and particularly CRMB. A significant increase in alkane and aromatic emission was detected when the binders were heated to 180 °C. Sulfur-containing VOCs were almost nonexistent for the base bitumen fumes, while a significant increase was detected in the fumes when two different types of CR were added to the bitumen, even at 120 °C. The additional CR in the bituminous binder contributed to the potentially harmful VOC emission of benzothiazole, which belongs to the class of sulfur-containing compounds. The concentration of benzothiazole was 65%, 38%, and 35% higher for CR1 in comparison to CR2 at 140, 160, and 180 °C, respectively. It is clear from the results that this method allows different bitumen sources or modifications to be quickly analyzed and their VOC emissions cross-compared. If adopted and confirmed further, the method could offer the asphalt industry a viable solution to monitor VOC emissions by analyzing samples in real time at different steps of the production process.