Bergrogers7489

Z Iurium Wiki

Verze z 15. 9. 2024, 16:50, kterou vytvořil Bergrogers7489 (diskuse | příspěvky) (Založena nová stránka s textem „An ecological risk assessment indicated that Cu, Ni, and Cr pose high potential risks in these industrial and residential areas (at the depth of 5-180 cm).…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

An ecological risk assessment indicated that Cu, Ni, and Cr pose high potential risks in these industrial and residential areas (at the depth of 5-180 cm). Furthermore, microbial community analysis indicated that some HM-tolerant bacteria (e.g., Gallionella, Acidovorax, Arenimonas, Curvibacter, and Sideroxydans) were dominant in the 5-120 cm layer, corresponding to high HM contents. A canonical correspondence analysis and co-occurrence network further confirmed that there was a strong correlation among the urban functional areas, HM contents, and the abundance of microorganisms in the urban river sediment. The results of this study have the potential to provide a bio-augmentation strategy for the in-situ bioremediation of sediment contaminated by HMs.Sustainable intensive cropping systems have been implemented for three decades in suburban agricultural districts of Shanghai, China. These human-managed soils have been developed from paleosol or alluvial soils across different regions. However, little is known about the geographical distribution patterns of microbes and microbial community assembly in the sustainable intensive soils after decades of anthropogenic disturbances. Here, we investigated the impact of local geochemical properties and geographic distance on stochastic/deterministic microbial community assembly processes using high-throughput sequencing and phylogenetic null modeling analysis. Our results showed that soil pH was the most important environmental factor determining bacterial and fungal community structure. Importantly, only soil organic matter was positively correlated with fungal α-diversity, suggesting the efficient use of carbon substrates in sustainable agricultural systems, compensating for the lack of chemical fertilization andnge preferable for most soil microbes. These results unveil assembly mechanisms of soil microbial community after several decades of sustainable intensive management, and contribute to understand the role of microbes in ecosystems in establishing a functional equilibrium which may enable sustainability to be preserved.A series of experiments on the oxidative removal of NO from flue gas using a novel in situ Fenton (IF) system was performed in the presence of ultraviolet light (UV). The comparison tests revealed that the in situ Fenton system facilitated by UV (UV/IF) has a better oxidation ability of NO than that of the IF system due to the photochemical effect on the generation of oxidative species like (OH). Both of the aforementioned oxidation efficiencies were higher than that of the conventional Fenton system (CF) depending on the premix of Fe2+ and H2O2 solutions, which attribute to the improvement of (OH) yield and valid utilization with continuous addition of fresh reagents and UV radiation. In follow-up experiments, the effects of UV power, gas flow rate, reagent temperature, Fe2+/H2O2 molar ratio, initial pH, initial concentration of NO and SO2 and volume fraction O2 and CO2 on the oxidative removal of NO by UV/IF method were investigated respectively. Moreover, the results of kinetic analysis indicated that NO oxidation was confirmed to have a pseudo-first-order kinetics pattern. The rate constants decreased slightly with increasing liquid temperature, and then the apparent activation energy of NO oxidation reactions in the UV/IF system was calculated as -5.62 kJ/mol by the Arrhenius equation. Furthermore, the reaction mechanism and application prospects concerning NO oxidative removal by using the UV/IF system was speculated in brief. Finally, the computational fluid dynamics (CFD) simulations revealed that the improvement of axial and radial gas hold-up would enhance the gas-liquid contact and accelerate the oxidation reactions on the interface. In addition to reasonable control of process parameters, the optimization of reactor interior structure needs to be carried out via CFD simulation and experimental validation in future research, both are favourable to promote the NO oxidation efficiency and large-scale development of this technology.The aim of this study was a detailed chemical characterisation of the particles released during the preparation of popular Portuguese dishes. PM2.5 samples were collected from the exhaust stacks on the roofs of a university canteen, a charcoal-grilled chicken restaurant and a wood-oven roasted piglet restaurant. The speciation of organic compounds was carried out by gas chromatography-mass spectrometry. The canteen was responsible for the lowest emissions of PM2.5, while emissions from the roasted piglet restaurant were the highest. Naphthalene was quantified as the most abundant aromatic compound in particle emissions from the canteen, while phenanthrene, fluoranthene, pyrene and chrysene were the dominant polycyclic aromatic hydrocarbons in samples from the other establishments. SIS3 purchase Benzo[a]pyrene equivalent concentrations obtained for the charcoal-grilled chicken and piglet restaurant indicate a dangerous carcinogenic potential to human health. Cholesterol was the prevalent sterol. Its highest values were obtained in particles from the charcoal-grilled chicken restaurant (621 ± 233 μg g-1 PM2.5). Oleic and palmitoleic were the unsaturated fatty acids identified at highest concentrations (from trace levels to 34.4 and to 6.89 mg g-1 PM2.5, respectively). Resin acids, such as dehydroabietic and abietic, were detected in all samples from the wood-oven roasted piglet restaurant. Nicotinamide was the amide detected at highest amount in emissions from the university canteen during the preparation of stews (7.67 mg g-1 PM2.5). Levoglucosan and its isomers were identified in all samples from the roasted piglet restaurant, but only the first monosaccharide anhydride was present in emissions from the university canteen and the charcoal-grilled chicken restaurant. Additionally, emission rates were estimated for the most representative compounds, taking into account the specific activity of each restaurant.Anthropogenic noise is a ubiquitous disturbance factor, which, owing to the extensive nature of transportation networks, and ability of sound waves to penetrate distances, has wide-reaching impacts on biological communities. Research effort on biological effects of anthropogenic noise is extensive, but has focused on waking behavior, and to our knowledge, no published experimental study exists on how noise affects sleep in free-living animals. Sleep plays vital functions in processes such as cellular repair and memory consolidation. Thus, understanding the potential for noise to disrupt sleep is a critical research objective. Whether different noise regimes exert distinct effects on behavior also remains poorly understood, as does intraspecific variation in noise sensitivity. To address these knowledge gaps, we used a repeated-measures field experiment involving broad-casting traffic noise recordings at great tit (Parus major) nest boxes over a series of consecutive nights. We evaluated whether increasing theating effects of noise exposure. CAPSULE Experimental exposure to temporally variable and consistent traffic noise negatively affected sleep behavior in a free-living songbird.Pesticides in agricultural surface water runoff cause a major threat to freshwater systems. Installation of filter systems or constructed wetlands in areas of preferential run-off is a possible measure for pesticides abatement. To develop such systems, combinations of filter materials suitable for retention of both hydrophilic and hydrophobic organic pesticides were tested for pesticide removal in planted microcosms. The retention of six pesticides frequently detected in surface waters (bentazone, MCPA, metalaxyl, propiconazole, pencycuron, and imidacloprid) was evaluated in unplanted and planted pot experiments with novel bed material mixtures consisting of pumice, vermiculite, water super-absorbent polymer (SAP) for retention of ionic and water soluble pesticides, and synthetic hydrophobic wool for adsorption of hydrophobic pesticides. The novel materials were compared to soil with high organic matter content. The highest retention of the pesticides was observed in the soil, with a considerable translocation of pesticides into the plants, and low leaching potential, in particular for the hydrophobic compounds. However, due to the high retention of pesticides in soil, environmental risks related to their long term mobilization cannot be excluded. Mixtures of pumice and vermiculite with SAP resulted in high retention of i) water and ii) both hydrophilic and hydrophobic pesticides but with much lower leaching potential compared to the mineral systems without SAP. link2 Mixtures of such materials may provide near natural treatment options in riparian strips and also for treatment of rainwater runoff without the need for water containment systems.Ionic liquids (ILs) became emerging pollutants. Their poor degradation and accumulation in organisms urged studies on the long-term effects and also the underlying mechanisms. Currently, 1-butylpyrinium chloride ([bpyr]Cl) was chosen to represent the pyridine-based ILs. Its multi-generational effects were measured on C. elegans for 14 consecutive generations (F1 to F14), and the trans-generational effects were also measured in the great-grand-children (T3 and T3') of F1 and F14. The multi-generational results from F1 to F14 showed that the effects of [bpyr]Cl on the initial and total reproduction and lifespan showed oscillation between inhibition and stimulation. Notably, hormetic effects on reproduction were observed in F7 to F10. The trans-generational effects in T3 and T3' showed different residual consequences between one generational exposure (F1) and multiple generational exposure (F14). Further biochemical analysis showed that the pro/antioxidant status also showed oscillation between inhibition and stimulation. The oscillation levels were greater in superoxide dismutase (SOD), catalase (CAT) and protein carbonyl content (PC) than those in glutathione peroxidase (GSH-Px), reactive oxygen species (ROS) and hydroxyl radical (OH). The pro/antioxidant status contributed to both multi- and trans-generational effects of [bpyr]Cl. link3 Future studies should pay attentions to the long-term influence of ILs and also epigenetic explanations.Although many COVID-19 patients isolate and recover at home, the dispersal of SARS-CoV-2 onto surfaces and dust within the home environment remains poorly understood. To investigate the distribution and persistence of SARS-CoV-2 in a home with COVID-19 positive occupants, samples were collected from a household with two confirmed COVID-19 cases (one adult and one child). Home surface swab and dust samples were collected two months after symptom onset (and one month after symptom resolution) in the household. The strength of the SARS-CoV-2 molecular signal in fomites varied as a function of sample location, surface material and cleaning practices. Notably, the SARS-CoV-2 RNA signal was detected at several locations throughout the household although cleaning appears to have attenuated the signal on many surfaces. Of the 24 surfaces sampled, 46% were SARS-CoV-2 positive at the time of sampling. The SARS-CoV-2 concentrations in dust recovered from floor and HVAC filter samples ranged from 104 to 105 N2 gene copies/g dust.

Autoři článku: Bergrogers7489 (Moran MacMillan)