Liherskind9626

Z Iurium Wiki

Verze z 15. 9. 2024, 15:35, kterou vytvořil Liherskind9626 (diskuse | příspěvky) (Založena nová stránka s textem „Papaya-associated foodborne illness outbreaks have been frequently reported worldwide. The goal of this study was to evaluate the behavior of Salmonella Ty…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Papaya-associated foodborne illness outbreaks have been frequently reported worldwide. The goal of this study was to evaluate the behavior of Salmonella Typhimurium and Listeria monocytogenes on whole papaya during storage and sanitizing process. Fresh green papayas were inoculated with approximately 7 log CFU of S. Typhimurium and L. monocytogenes and stored at 21 or 7 °C for 14 days. Bacteria counts were determined on day 0, 1, 7, 10 and 14. Fresh green papayas inoculated with approximately 8 log CFU of the bacteria were treated for 5 min with 2.5, 5 and 10 ppm aqueous chlorine dioxide (ClO2). The ClO2 solutions were generated by mixing sodium chlorite with an acid, which was HCl, lactic acid or malic acid. The detection limit of the enumeration method was 2.40 log CFU per papaya. At the end of storage period, S. Typhimurium and L. monocytogenes grew by 1.88 and 1.24 log CFU on papayas at 21 °C, respectively. Both bacteria maintained their initial population at inoculation on papayas stored at 7 °C. Higher concentrations of ClO2 reduced more bacteria on papaya. 10 ppm ClO2, regardless the acid used to generate the solutions, inactivated S. Typhimurium to undetectable level on papaya. 10 ppm ClO2 generated with HCl, lactic acid and malic acid reduced L. monocytogenes by 4.40, 6.54 and 8.04 log CFU on papaya, respectively. Overall, ClO2 generated with malic acid showed significantly higher bacterial reduction than ClO2 generated with HCl or lactic acid. These results indicate there is a risk of survival and growth for S. Typhimurium and L. monocytogenes on papaya at commercial storage conditions. Aqueous ClO2 generated with malic acid shows effectiveness in inactivating the pathogenic bacteria on papaya.The growing importance of rice globally over the past three decades is evident in its strategic place in many countries' food security planning policies. Still, its cultivation emits substantial greenhouse gases (GHGs). The Indica and Japonica sub-species of Oryza sativa L. are mainly grown, with Indica holding the largest market share. The awareness, economics, and acceptability of Japonica rice in a food-insecure Indica rice-consuming population were surveyed. The impact of parboiling on Japonica rice was studied and the factors which most impacted stickiness were investigated through sensory and statistical analyses. A comparison of the growing climate and greenhouse gas emissions of Japonica and Indica rice was carried out by reviewing previous studies. selleck compound Survey results indicated that non-adhesiveness and pleasant aroma were the most preferred properties. link2 Parboiling treatment altered Japonica rice's physical and chemical properties, introducing gelatinization of starch and reducing adhesiveness while retaining micronutrient concentrations. Regions with high food insecurity and high consumption of Indica rice were found to have suitable climatic conditions for growing Japonica rice. link3 Adopting the higher-yielding, nutritious Japonica rice whose cultivation emits less GHG in these regions could help strengthen food security while reducing GHGs in global rice cultivation.Protein-stabilized emulsions tend to be susceptible to droplet aggregation in the presence of high ionic strengths or when exposed to acidic gastric conditions due to a reduction of the electrostatic repulsion between the protein-coated droplets. Previously, we found that incorporating cinnamaldehyde into the oil phase improved the resistance of whey protein isolate (WPI)-stabilized emulsions against aggregation induced by NaCl, KCl and CaCl2. In the current study, we aimed to establish the impact of cinnamaldehyde on the tolerance of WPI-stabilized emulsions to high salt levels during food processing and to gastric conditions. In the absence of cinnamaldehyde, the addition of high levels of monovalent ions (NaCl and KCl) to WPI-emulsions cause appreciable droplet aggregation, with the particle sizes increasing from 150 nm to 413 nm and 906 nm in the presence of NaCl and KCl, respectively. In contrast, in the presence of 30% cinnamaldehyde in the oil phase, the WPI-emulsions remained stable to aggregation and the particle size of emulsions kept within 200 nm over a wide range of salt concentrations (0-2000 mM). Divalent counter-ions promoted droplet aggregation at lower concentrations (≤20 mM) than monovalent ones, which was attributed to ion-binding and ion-bridging effects, but the salt stability of the WPI emulsions was still improved after cinnamaldehyde addition. The incorporation of cinnamaldehyde into the oil phase also improved the resistance of the WPI-coated oil droplets to aggregation in simulated gastric fluids (pH 3.1-3.3). This study provides a novel way of improving the resistance of whey-protein-stabilized emulsions to aggregation at high ionic strengths or under gastric conditions.High-pressure processing (HPP) is a nonthermal technology used for food preservation capable of generating pasteurized milk products. There is much information regarding the inactivation of microorganisms in milk by HPP, and it has been suggested that 600 MPa for 5 min is adequate to reduce the number of log cycles by 5-7, resulting in safe products comparable to traditionally pasteurized ones. However, there are many implications regarding physicochemical and functional properties. This review explores the potential of HPP to preserve milk, focusing on the changes in milk components such as lipids, casein, whey proteins, and minerals, and the impact on their functional and physicochemical properties, including pH, color, turbidity, emulsion stability, rheological behavior, and sensory properties. Additionally, the effects of these changes on the elaboration of dairy products such as cheese, cream, and buttermilk are explored.Chokeberry fruit, one of the richest plant sources of bioactives, is processed into different foodstuffs, mainly juice, which generates a considerable amount of by-products. To follow the latest trends in the food industry considering waste management, the study aimed to produce chokeberry pomace extract powders and conduct experimental and chemometric assessment of the effect of different carriers and drying techniques on the physico-chemical properties of such products. The PCA analysis showed that the examined powders were classified into two groups freeze-dried (variation in case of moisture content, water activity, colour, and browning index) and vacuum-dried (bulk density). No clear pattern was observed for the physical properties of carrier added products. The sum of polyphenolics (phenolic acids, anthocyanins and flavonols) ranged from 3.3-22.7 g/100 g dry matter. Drying techniques had a stronger effect on the polyphenols profile than the type of carrier. Hydroxymethyl-L-furfural formation was enhanced by inulin addition during high-temperature treatment. Overall, the addition of maltodextrin and trehalose mixture for freeze drying and vacuum drying at 90 °C caused the highest retention of polyphenolics and the lowest formation of hydroxymethyl-L-furfural; however, an individual and comprehensive approach is required when the obtainment of high-quality chokeberry powders is expected.Chocolate is an adequate matrix to deliver bioactive ingredients. However, it contains high sugar levels, one of the leading causes of chronic degenerative diseases. This work aimed to evaluate the effects of milk chocolate reformulation with alternative sugar sweeteners (Sw; isomalt + stevia), probiotics (Prob), and ω-3 polyunsaturated fatty acids (PUFAs) on its physicochemical properties and consumers' acceptability. Lactobacillus plantarum 299v (L. p299v) and Lactobacillus acidophilus La3 (DSMZ 17742) were added as Prob strains, and fish oil (FO) was added as the source of ω-3 PUFAs. Prob addition resulted in chocolates with >2 × 107 colony forming unit (CFU) per serving size (12 g). Except for Prob, aw values of all treatments were less then 0.46. Sw and Sw + Prob presented the nearest values to the control in hardness, whereas Sw without FO increased fracturability. FO, Sw + FO, and Sw + Prob + FO contained 107.4 ± 12.84, 142.9 ± 17.9, and 133.78 ± 8.76 mg of ω-3 PUFAs per chocolate, respectively. Prob + FO increased the resistance of chocolate to shear stress, while Sw + FO showed a similar flow behavior to the control. The consumers' acceptability of Sw + Prob chocolate was adequate, while Sw + Prob + FO had higher acceptability than Prob + FO. Health benefits of reformulated milk chocolates requires further assessment by in vitro, in vivo and clinical studies.This study evaluates near-infrared spectroscopy (NIRS) feasibility in combination with various pre-treatments and chemometric approaches for pre-sliced Iberian salchichón under modified atmosphere (MAP) classification according to the official commercial category (defined by the combination of genotype and feeding regime) of the raw material used for its manufacturing (Black and Red purebred Iberian and Iberian × Duroc crossed (50%) pigs, respectively, reared outdoors in a Montanera system and White Iberian × Duroc crossed (50%) pigs with feed based on commercial fodder) without opening the package. In parallel, NIRS feasibility in combination with partial least squares regression (PLSR) to predict main quality traits was assessed. The best-fitting models developed by means of partial least squares discriminant analysis (PLS-DA) and linear discriminant analysis (LDA) yielded high discriminant ability and thus offered a tool to support the assignment of pre-sliced MAP Iberian salchichón according to the commercial category of the raw material. In addition, good predictive ability for C183 n-3 was obtained, which may help to support quality control.The function of Hemerocallis citrina Baroni (daylily) on promoting lactation is reported in several ancient Chinese medicine books. However, nowadays, there is no conclusive data to support this statement. In this study, we investigated the effect of Hemerocallis citrina Baroni extract (HCE) on lactation insufficiency in chronic unpredictable mild stress (CUMS) dams and further explored the mechanism and functional components through network pharmacology. The results showed that HCE could increase the offspring's weight, serum prolactin (PRL), and oxytocin (OT) level of CUMS dams. Network pharmacology analysis revealed that the facilitation of HCE on lactation is the result of the comprehensive action of 62 components on 209 targets and 260 pathways, among this network, quercetin, kaempferol, thymidine, etc., were the vital material basis, signal transducer and activator of transcription 3 (STAT3), mitogen activity protein kinase 1 (MAPK1), tumor protein P53 (TP53), etc., were the core targets, and the prolactin signaling pathway was the core pathway. In addition, verification test results showed that HCE regulated the abnormal expression of the prolactin signaling pathway, including STAT3, cyclin D1 (CCND1), MAPK1, MAPK8, nuclear factor NF-kappa-B p105 subunit (NFKB1), and tyrosine-protein kinase (JAK2). In conclusion, HCE exhibited a facilitation of lactation insufficiency, in which quercetin, kaempferol, thymidine, etc., were the most important material basis. The mechanism of this promotional effect is mediated by the prolactin signaling pathway in mammary gland.

Autoři článku: Liherskind9626 (Daniel Jokumsen)