Dissingjordan8276
Burkholderia pseudomallei, the founding member of the B. pseudomallei complex (Bpc), is a biothreat agent and causes melioidosis, a disease whose treatment mainly relies on ceftazidime and meropenem. The concern is that B. pseudomallei could enhance its drug resistance repertoire by the acquisition of DNA from resistant near-neighbor species. Burkholderia ubonensis, a member of the B. cepacia complex (Bcc), is commonly coisolated from environments where B. pseudomallei is present. Unlike B. pseudomallei, in which significant primary carbapenem resistance is rare, it is not uncommon in B. ubonensis, but the underlying mechanisms are unknown. We established that carbapenem resistance in B. ubonensis is due to an inducible class A PenB β-lactamase, as has been shown for other Bcc bacteria. Inducibility is not sufficient for high-level resistance but also requires other determinants, such as a PenB that is more robust than that present in susceptible isolates, as well as other resistance factors. Curiously and diible class A β-lactamase. This includes resistance to carbapenems. Our work demonstrates that studies with near-neighbor species are informative about the diversity of antimicrobial resistance in Burkholderia and can also provide clues about the potential of resistance transfer between bacteria inhabiting the same environment. Knowledge about potential adverse challenges resulting from the horizontal transfer of resistance genes between members of the two complexes enables the design of effective countermeasures. Copyright © 2020 Somprasong et al.While the basic mechanisms of flavivirus entry and fusion are understood, little is known about the postfusion events that precede RNA replication, such as nucleocapsid disassembly. We describe here a sensitive, conditionally replication-defective yellow fever virus (YFV) entry reporter, YFVΔSK/Nluc, to quantitively monitor the translation of incoming, virus particle-delivered genomes. We validated that YFVΔSK/Nluc gene expression can be neutralized by YFV-specific antisera and requires known flavivirus entry pathways and cellular factors, including clathrin- and dynamin-mediated endocytosis, endosomal acidification, YFV E glycoprotein-mediated fusion, and cellular LY6E and RPLP1 expression. The initial round of YFV translation was shown to require cellular ubiquitylation, consistent with recent findings that dengue virus capsid protein must be ubiquitylated in order for nucleocapsid uncoating to occur. Importantly, translation of incoming YFV genomes also required valosin-containing protein (VCP)/p97, a cellular ATPase that unfolds and extracts ubiquitylated client proteins from large complexes. RNA transfection and washout experiments showed that VCP/p97 functions at a postfusion, pretranslation step in YFV entry. Finally, VCP/p97 activity was required by other flaviviruses in mammalian cells and by YFV in mosquito cells. Together, these data support a critical role for VCP/p97 in the disassembly of incoming flavivirus nucleocapsids during a postfusion step in virus entry.IMPORTANCE Flaviviruses are an important group of RNA viruses that cause significant human disease. The mechanisms by which flavivirus nucleocapsids are disassembled during virus entry remain unclear. Here, we used a yellow fever virus entry reporter, which expresses a sensitive reporter enzyme but does not replicate, to show that nucleocapsid disassembly requires the cellular protein-disaggregating enzyme valosin-containing protein, also known as p97. Copyright © 2020 Ramanathan et al.Staphylococcus aureus is a major concern in human health care, mostly due to the increasing prevalence of antibiotic resistance. Intracellular localization of S. aureus plays a key role in recurrent infections by protecting the pathogens from antibiotics and immune responses. Peptidoglycan hydrolases (PGHs) are highly specific bactericidal enzymes active against both drug-sensitive and -resistant bacteria. However, PGHs able to effectively target intracellular S. aureus are not yet available. To overcome this limitation, we first screened 322 recombineered PGHs for staphylolytic activity under conditions found inside eukaryotic intracellular compartments. The most active constructs were modified by fusion to different cell-penetrating peptides (CPPs), resulting in increased uptake and enhanced intracellular killing (reduction by up to 4.5 log units) of various S. aureus strains (including methicillin-resistant S. aureus [MRSA]) in different tissue culture infection models. The combined application of synergisllular S. aureus Fusion of these so-called enzybiotics to cell-penetrating peptides enhanced their uptake and intracellular bactericidal activity in cell culture and in an abscess mouse model. Our results suggest that cell-penetrating enzybiotics are a promising new class of therapeutics against staphylococcal infections. Copyright © 2020 Röhrig et al.Staphylococcus aureus can colonize the human host and cause a variety of superficial and invasive infections. The success of S. aureus as a pathogen derives from its ability to modulate its virulence through the release, sensing of and response to cyclic signaling peptides. Here we provide, for the first time, evidence that S. aureus processes and secretes small linear peptides through a specialized pathway that converts a lipoprotein leader into an extracellular peptide signal. We have identified and confirmed the machinery for each step and demonstrate that the putative membrane metalloprotease Eep and the EcsAB transporter are required to complete the processing and secretion of the peptides. In addition, we have identified several linear peptides, including the interspecies signaling molecule staph-cAM373, that are dependent on this processing and secretion pathway. These findings are particularly important because multiple Gram-positive bacteria rely on small linear peptides to control bacterial gene expression and virulence.IMPORTANCE Here, we provide evidence indicating that S. aureus secretes small linear peptides into the environment via a novel processing and secretion pathway. The discovery of a specialized pathway for the production of small linear peptides and the identification of these peptides leads to several important questions regarding their role in S. Quizartinib aureus biology, most interestingly, their potential to act as signaling molecules. The observations in this study provide a foundation for further in-depth studies into the biological activity of small linear peptides in S. aureus. Copyright © 2020 Schilcher et al.OBJECTIVE To evaluate the point of view of patients with Parkinson disease (PD) on early detection and risk disclosure in the prodromal phase of PD and to derive recommendations for an ethical framework for the recruitment of prodromal PD cohorts. METHODS A standardized questionnaire to evaluate the patients' perception on early diagnosis in PD was designed by an interdisciplinary study group. After testing in a preliminary feasibility study (n = 20), the survey was performed retrospectively with patients from our clinic. RESULTS A total of 101 patients with PD answered the questions. The majority of patients reported that time from onset of motor symptoms to diagnosis was burdensome, including false diagnoses and many consultations of various medical specialists. However, most of the patients evaluated early risk disclosure with skepticism. Freedom of choice and the potential of changes in lifestyle were rated as important. CONCLUSION Although patients with PD reported the time to diagnosis retrospectively as burdensome, the majority was skeptical regarding early disclosure of risk, especially with regard to the lack of pharmacologic options. Circumstances under which early detection and disclosure would have been approved by the majority of patients were (1) advice on lifestyle changes (exercise, nutrition) as potentially disease course-modifying therapy; (2) the establishment of an early diagnosis "culture," including early clarification of the patients' wish to know; and (3) regular support and follow-up of individuals after risk disclosure. © 2020 American Academy of Neurology.OBJECTIVE To study the macrostructural and microstructural MRI correlates of brain astrocytosis, measured with 11C-deuterium-L-deprenyl (11C-DED)-PET, in familial autosomal dominant Alzheimer disease (ADAD). METHODS The total sample (n = 31) comprised ADAD mutation carriers (n = 10 presymptomatic, 39.2 ± 10.6 years old; n = 3 symptomatic, 55.5 ± 2.0 years old) and noncarriers (n = 18, 44.0 ± 13.7 years old) belonging to families with mutations in either the presenilin-1 or amyloid precursor protein genes. All participants underwent structural and diffusion MRI and neuropsychological assessment, and 20 participants (6 presymptomatic and 3 symptomatic mutation carriers and 11 noncarriers) also underwent 11C-DED-PET. RESULTS Vertex-wise interaction analyses revealed a differential relationship between carriers and noncarriers in the association between 11C-DED binding and estimated years to onset (EYO) and between cortical mean diffusivity (MD) and EYO. These differences were due to higher 11C-DED binding in presymptomatic carriers, with lower binding in symptomatic carriers compared to noncarriers, and to lower cortical MD in presymptomatic carriers, with higher MD in symptomatic carriers compared to noncarriers. Using a vertex-wise local correlation approach, 11C-DED binding was negatively correlated with cortical MD and positively correlated with cortical thickness. CONCLUSIONS Our proof-of-concept study is the first to show that microstructural and macrostructural changes can reflect underlying neuroinflammatory mechanisms in early stages of Alzheimer disease (AD). The findings support a role for neuroinflammation in AD pathogenesis, with potential implications for the correct interpretation of neuroimaging biomarkers as surrogate endpoints in clinical trials. Copyright © 2020 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.OBJECTIVE To test the hypothesis that markers of coagulation and hemostatic activation (MOCHA) help identify causes of cryptogenic stroke, we obtained serum measurements on 132 patients and followed them up to identify causes of stroke. METHODS Consecutive patients with cryptogenic stroke who met embolic stroke of undetermined source (ESUS) criteria from January 1, 2017, to October 31, 2018, underwent outpatient cardiac monitoring and the MOCHA profile (serum D-dimer, prothrombin fragment 1.2, thrombin-antithrombin complex, and fibrin monomer) obtained ≥2 weeks after the index stroke; abnormal MOCHA profile was defined as ≥2 elevated markers. Prespecified endpoints monitored during routine clinical visits included new atrial fibrillation (AF), malignancy, venous thromboembolism (VTE), or other defined hypercoagulable states (HS). RESULTS Overall, 132 patients with ESUS (mean age 64 ± 15 years, 61% female, 51% nonwhite) met study criteria. During a median follow-up of 10 (interquartile range 7-14) months, AF, malignancy, VTE, or HS was identified in 31 (23%) patients; the 53 (40%) patients with ESUS with abnormal MOCHA were significantly more likely than patients with normal levels to have subsequent new diagnoses of malignancy (21% vs 0%, p less then 0.001), VTE (9% vs 0%, p = 0.009), or HS (11% vs 0%, p = 0.004) but not AF (8% vs 9%, p = 0.79). The combination of 4 normal MOCHA and normal left atrial size (n = 30) had 100% sensitivity for ruling out the prespecified endpoints. CONCLUSION The MOCHA profile identified patients with cryptogenic stroke more likely to have new malignancy, VTE, or HS during short-term follow-up and may be useful in direct evaluation for underlying causes of cryptogenic stroke. Copyright © 2020 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.