Carverfalkenberg4119

Z Iurium Wiki

Verze z 14. 9. 2024, 19:55, kterou vytvořil Carverfalkenberg4119 (diskuse | příspěvky) (Založena nová stránka s textem „The lack of suitable animal models for (dry) age-related macular degeneration (AMD) has hampered therapeutic research into the disease, so far. In this stu…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The lack of suitable animal models for (dry) age-related macular degeneration (AMD) has hampered therapeutic research into the disease, so far. In this study, pigmented rats and mice were systematically injected with various doses of sodium iodate (SI). After injection, the retinal structure and visual function were non-invasively characterized over time to obtain in-depth data on the suitability of these models for studying experimental therapies for retinal degenerative diseases, such as dry AMD.

SI was injected into the tail vein (i.v.) using a series of doses (0-70 mg/kg) in adolescent C57BL/6J mice and Brown Norway rats. The retinal structure and function were assessed non-invasively at baseline (day 1) and at several time points (1-3, 5, and 10-weeks) post-injection by scanning laser ophthalmoscopy (SLO), optical coherence tomography (OCT), and electroretinography (ERG).

After the SI injection, retinal degeneration in mice and rats yielded similar results. The lowest dose (10 mg/kg) resulted in no observed dose-dependent structural and functional pathological effects on the retinal pigment epithelium (RPE) and retina in the pigmented mouse and rat strains that were used in this study. Similar effects were observed in both species. In particular, a dose of 30 mg/kg seems to be suitable for future studies on developing experimental therapies. These relatively easily induced non-inherited models may serve as useful tools for evaluating novel therapies for RPE-related retinal degenerations, such as AMD.This study aimed to improve the stability and catalytic properties of Thermomyces lanuginosus lipase (TLL) adsorbed on a hydrophobic support. At the optimized conditions (pH 5 and 25 °C without any additions), the Sips isotherm model effectively fitted the equilibrium adsorption data, indicating a monolayer and the homogenous distribution of immobilized lipase molecules. To preserve the high specific activity of adsorbed lipase, the immobilized lipase (IL) with a moderate loading amount (approximately 40% surface coverage) was selected. Polyethylenimine (PEI) and chitosan (CS) were successfully applied as bridging units to in situ crosslink the immobilized lipase molecules in IL. At the low polymer concentration (0.5%, w/w) and with 1 h incubation, insignificant changes in average pore size were detected. Short-chain PEI and CS (MW ≤ 2 kDa) efficiently improved the lipase stability, i.e., the lipase loss decreased from 40% to <2%. Notably, CS performed much better than PEI in maintaining lipase activity. IL crosslinked with CS-2 kDa showed a two- to three-fold higher rate when hydrolyzing p-nitrophenyl butyrate and a two-fold increase in the catalytic efficiency in the esterification of hexanoic acid with butanol. These in situ crosslinking strategies offer good potential for modulating the catalytic properties of TLL for a specific reaction.With the development of targeted therapy, non-small cell lung cancer (NSCLC) patients could have more treatment choices if target mutation presents. The neurotrophic tropomyosin receptor kinase (NTRK) has a low prevalence in NSCLC, roughly around 0.5%. FDA had approved two first generation NTRK inhibitors, larotrectinib and entrectinib. Both medications have excellent CNS penetration. This manuscript will review available data on targeting NTRK fusions in NSCLC and mechanisms of drug resistance.Luteolin is one of the most common flavonoids present in edible plants and its potential benefits to the central nervous system include decrease of microglia activation, neuronal damage and high antioxidant properties. The aim of this research was to evaluate the neuroprotective, antioxidant and anti-inflammatory activities of luteolin-7-O-glucoside (Lut7). Undifferentiated and retinoic acid (RA)-differentiated SH-SY5Y cells were pretreated with Lut7 and incubated with 6-hydroxydopamine (6-OHDA). Cytotoxic and neuroprotective effects were determined by MTT assay. Antioxidant capacity was determined by DPPH, FRAP, and ORAC assays. ROS production, mitochondrial membrane potential (ΔΨm), Caspase-3 activity, acetylcholinesterase inhibition (AChEI) and nuclear damage were also determined in SH-SY5Y cells. TNF-α, IL-6 and IL-10 release were evaluated in LPS-induced RAW264.7 cells by ELISA. In undifferentiated SH-SY5Y cells, Lut7 increased cell viability after 24 h, while in RA-differentiated SH-SY5Y cells, Lut7 increased cell viability after 24 and 48 h. Lut7 showed a high antioxidant activity when compared with synthetic antioxidants. In undifferentiated cells, Lut7 prevented mitochondrial membrane depolarization induced by 6-OHDA treatment, decreased Caspase-3 and AChE activity, and inhibited nuclear condensation and fragmentation. In LPS-stimulated RAW264.7 cells, Lut7 treatment reduced TNF-α levels and increased IL-10 levels after 3 and 24 h, respectively. In summary, the results suggest that Lut7 has neuroprotective effects, thus, further studies should be considered to validate its pharmacological potential in more complex models, aiming the treatment of neurodegenerative diseases.Verticillium wilt (VW), a fungal disease caused by Verticillium dahliae, currently devastates cotton fiber yield and quality seriously, yet few resistance germplasm resources have been discovered in Gossypium hirsutum. The cotton variety Nongda601 with suitable VW resistance and high yield was developed in our lab, which supplied elite resources for discovering resistant genes. Early nodulin-like protein (ENODL) is mainly related to nodule formation, and its role in regulating defense response has been seldom studied. Here, 41 conserved ENODLs in G. hirsutum were identified and characterized, which could divide into four subgroups. We found that GhENODL6 was upregulated under V. dahliae stress and hormonal signal and displayed higher transcript levels in resistant cottons than the susceptible. The GhENODL6 was proved to positively regulate VW resistance via overexpression and gene silencing experiments. Overexpression of GhENODL6 significantly enhanced the expressions of salicylic acid (SA) hormone-related transcription factors and pathogenicity-related (PR) protein genes, as well as hydrogen peroxide (H2O2) and SA contents, resulting in improved VW resistance in transgenic Arabidopsis. Correspondingly, in the GhENODL6 silenced cotton, the expression levels of both phenylalanine ammonia lyase (PAL) and 4-coumarate-CoA ligase (4CL) genes significantly decreased, leading to the reduced SA content mediating by the phenylalanine ammonia lyase pathway. Taken together, GhENODL6 played a crucial role in VW resistance by inducing SA signaling pathway and regulating the production of reactive oxygen species (ROS). These findings broaden our understanding of the biological roles of GhENODL and the molecular mechanisms underlying cotton disease resistance.Intestinal mucosal barrier dysfunction caused by disease and/or chemotherapy lacks an effective treatment, which highlights a strong medical need. Our group has previously demonstrated the potential of melatonin and misoprostol to treat increases in intestinal mucosal permeability induced by 15-min luminal exposure to a surfactant, sodium dodecyl sulfate (SDS). However, it is not known which luminal melatonin and misoprostol concentrations are effective, and whether they are effective for a longer SDS exposure time. The objective of this single-pass intestinal perfusion study in rats was to investigate the concentration-dependent effect of melatonin and misoprostol on an increase in intestinal permeability induced by 60-min luminal SDS exposure. The cytoprotective effect was investigated by evaluating the intestinal clearance of 51Cr-labeled EDTA in response to luminal SDS as well as a histological evaluation of the exposed tissue. Melatonin at both 10 and 100 µM reduced SDS-induced increase in permeability by 50%. Misoprostol at 1 and 10 µM reduced the permeability by 50 and 75%, respectively. QX77 concentration Combination of the two drugs at their respective highest concentrations had no additive protective effect. These in vivo results support further investigations of melatonin and misoprostol for oral treatments of a dysfunctional intestinal barrier.Vision loss through the degeneration of retinal ganglion cell (RGC) axons occurs in both chronic and acute conditions that target the optic nerve. These include glaucoma, in which sensitivity to intraocular pressure (IOP) causes early RGC axonal dysfunction, and optic nerve trauma, which causes rapid axon degeneration from the site of injury. In each case, degeneration is irreversible, necessitating new therapeutics that protect, repair, and regenerate RGC axons. Recently, we demonstrated the reparative capacity of using collagen mimetic peptides (CMPs) to heal fragmented collagen in the neuronal extracellular milieu. This was an important step in the development of neuronal-based therapies since neurodegeneration involves matrix metalloproteinase (MMP)-mediated remodeling of the collagen-rich environment in which neurons and their axons exist. We found that intraocular delivery of a CMP comprising single-strand fractions of triple helix human type I collagen prevented early RGC axon dysfunction in an inducible glaucoma model. Additionally, CMPs also promoted neurite outgrowth from dorsal root ganglia, challenged in vitro by partial digestion of collagen. Here, we compared the ability of a CMP sequence to protect RGC axons in both inducible glaucoma and optic nerve crush. A three-week +40% elevation in IOP caused a 67% degradation in anterograde transport to the superior colliculus, the primary retinal projection target in rodents. We found that a single intravitreal injection of CMP during the period of IOP elevation significantly reduced this degradation. The same CMP delivered shortly after optic nerve crush promoted significant axonal recovery during the two-week period following injury. Together, these findings support a novel protective and reparative role for the use of CMPs in both chronic and acute conditions affecting the survival of RGC axons in the optic projection to the brain.Dermatitis herpetiformis (DH) is the skin manifestation of celiac disease, presenting with a blistering rash typically on the knees, elbows, buttocks and scalp. In both DH and celiac disease, exposure to dietary gluten triggers a cascade of events resulting in the production of autoantibodies against the transglutaminase (TG) enzyme, mainly TG2 but often also TG3. The latter is considered to be the primary autoantigen in DH. The dynamics of the development of the TG2-targeted autoimmune response have been studied in depth in celiac disease, but the immunological process underlying DH pathophysiology is incompletely understood. Part of this process is the occurrence of granular deposits of IgA and TG3 in the perilesional skin. While this serves as the primary diagnostic finding in DH, the role of these immunocomplexes in the pathogenesis is unknown. Intriguingly, even though gluten-intolerance likely develops initially in a similar manner in both DH and celiac disease, after the onset of the disease, its manifestations differ widely.Transmissible spongiform encephalopathies or prion disorders are fatal infectious diseases that cause characteristic spongiform degeneration in the central nervous system. The causative agent, the so-called prion, is an unconventional infectious agent that propagates by converting the host-encoded cellular prion protein PrP into ordered protein aggregates with infectious properties. Prions are devoid of coding nucleic acid and thus rely on the host cell machinery for propagation. While it is now established that, in addition to PrP, other cellular factors or processes determine the susceptibility of cell lines to prion infection, exact factors and cellular processes remain broadly obscure. Still, cellular models have uncovered important aspects of prion propagation and revealed intercellular dissemination strategies shared with other intracellular pathogens. Here, we summarize what we learned about the processes of prion invasion, intracellular replication and subsequent dissemination from ex vivo cell models.

Autoři článku: Carverfalkenberg4119 (Moss Gram)