Matthiesenxu9818

Z Iurium Wiki

Verze z 14. 9. 2024, 19:50, kterou vytvořil Matthiesenxu9818 (diskuse | příspěvky) (Založena nová stránka s textem „Here we report that attempted preparation of low-valent CaI complexes in the form of LCa-CaL (where L is a bulky β-diketiminate ligand) under dinitrogen (…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Here we report that attempted preparation of low-valent CaI complexes in the form of LCa-CaL (where L is a bulky β-diketiminate ligand) under dinitrogen (N2) atmosphere led to isolation of LCa(N2)CaL, which was characterized crystallographically. The N22- anion in this complex reacted in most cases as a very potent two-electron donor. Therefore, LCa(N2)CaL acts as a synthon for the low-valent CaI complex LCa-CaL, which was the target of our studies. The N22- anion could also be protonated to diazene (N2H2) that disproportionated to hydrazine and N2 The role of Ca d orbitals for N2 activation is discussed.Infections with many Gram-negative pathogens, including Escherichia coli, Salmonella, Shigella, and Yersinia, rely on type III secretion system (T3SS) effectors. We hypothesized that while hijacking processes within mammalian cells, the effectors operate as a robust network that can tolerate substantial contractions. This was tested in vivo using the mouse pathogen Citrobacter rodentium (encoding 31 effectors). Sequential gene deletions showed that effector essentiality for infection was context dependent and that the network could tolerate 60% contraction while maintaining pathogenicity. Despite inducing very different colonic cytokine profiles (e.g., interleukin-22, interleukin-17, interferon-γ, or granulocyte-macrophage colony-stimulating factor), different networks induced protective immunity. Using data from >100 distinct mutant combinations, we built and trained a machine learning model able to predict colonization outcomes, which were confirmed experimentally. Furthermore, reproducing the human-restricted enteropathogenic E. coli effector repertoire in C. rodentium was not sufficient for efficient colonization, which implicates effector networks in host adaptation. These results unveil the extreme robustness of both T3SS effector networks and host responses.The lung alveolus is the functional unit of the respiratory system required for gas exchange. During the transition to air breathing at birth, biophysical forces are thought to shape the emerging tissue niche. However, the intercellular signaling that drives these processes remains poorly understood. Applying a multimodal approach, we identified alveolar type 1 (AT1) epithelial cells as a distinct signaling hub. Lineage tracing demonstrates that AT1 progenitors align with receptive, force-exerting myofibroblasts in a spatial and temporal manner. Epigallocatechin manufacturer Through single-cell chromatin accessibility and pathway expression (SCAPE) analysis, we demonstrate that AT1-restricted ligands are required for myofibroblasts and alveolar formation. These studies show that the alignment of cell fates, mediated by biophysical and AT1-derived paracrine signals, drives the extensive tissue remodeling required for postnatal respiration.The 2011 Tohoku-oki earthquake occurred in the Japan Trench 10 years ago, where devastating earthquakes and tsunamis have repeatedly resulted from subduction of the Pacific plate. Densely instrumented seismic, geodetic, and tsunami observation networks precisely recorded the event, including seafloor observations. A large coseismic fault slip that unexpectedly extended to a shallow part of megathrust fault was documented. Strong lateral variations of the coseismic slip near the trench were recorded from marine geophysical studies, along with a possible cause of these variations. The seismic activities in east Japan are still higher than those before the earthquake, and crustal deformation is still occurring. Although the recurrence probability of a great earthquake (magnitude = ~9) in the Japan Trench in the near future is very low, a large normal fault earthquake seaward of the Japan Trench is a concerning possibility.Antiphospholipid antibodies (aPLs) cause severe autoimmune disease characterized by vascular pathologies and pregnancy complications. Here, we identify endosomal lysobisphosphatidic acid (LBPA) presented by the CD1d-like endothelial protein C receptor (EPCR) as a pathogenic cell surface antigen recognized by aPLs for induction of thrombosis and endosomal inflammatory signaling. The engagement of aPLs with EPCR-LBPA expressed on innate immune cells sustains interferon- and toll-like receptor 7-dependent B1a cell expansion and autoantibody production. Specific pharmacological interruption of EPCR-LBPA signaling attenuates major aPL-elicited pathologies and the development of autoimmunity in a mouse model of systemic lupus erythematosus. Thus, aPLs recognize a single cell surface lipid-protein receptor complex to perpetuate a self-amplifying autoimmune signaling loop dependent on the cooperation with the innate immune complement and coagulation pathways.Small cell lung carcinoma (SCLC) is highly mutated, yet durable response to immune checkpoint blockade (ICB) is rare. SCLC also exhibits cellular plasticity, which could influence its immunobiology. Here we discover that a distinct subset of SCLC uniquely upregulates MHC I, enriching for durable ICB benefit. In vitro modeling confirms epigenetic recovery of MHC I in SCLC following loss of neuroendocrine differentiation, which tracks with de-repression of STING. Transient EZH2 inhibition expands these non-neuroendocrine cells, which display intrinsic innate immune signaling and basally restored antigen presentation. Consistent with these findings, murine non-neuroendocrine SCLC tumors are rejected in a syngeneic model, with clonal expansion of immunodominant effector CD8 T cells. Therapeutically, EZH2 inhibition followed by STING agonism enhances T cell recognition and rejection of SCLC in mice. Together, these data identify MHC I as a novel biomarker of SCLC immune responsiveness and suggest novel immunotherapeutic approaches to co-opt SCLC's intrinsic immunogenicity.In lung adenocarcinoma, oncogenic EGFR mutations co-occur with many tumor suppressor gene alterations; however, the extent to which these contribute to tumor growth and response to therapy in vivo remains largely unknown. By quantifying the effects of inactivating 10 putative tumor suppressor genes in a mouse model of EGFR-driven Trp53-deficient lung adenocarcinoma, we found that Apc, Rb1, or Rbm10 inactivation strongly promoted tumor growth. Unexpectedly, inactivation of Lkb1 or Setd2-the strongest drivers of growth in a KRAS-driven model-reduced EGFR-driven tumor growth. These results are consistent with mutational frequencies in human EGFR- and KRAS-driven lung adenocarcinomas. Furthermore, KEAP1 inactivation reduced the sensitivity of EGFR-driven tumors to the EGFR inhibitor osimertinib, and mutations in genes in the KEAP1 pathway were associated with decreased time on tyrosine kinase inhibitor treatment in patients. Our study highlights how the impact of genetic alterations differs across oncogenic contexts and that the fitness landscape shifts upon treatment.

Autoři článku: Matthiesenxu9818 (Timmons Guthrie)