Kjeldgaardcrockett1941
Furthermore, the performances and future development of the synaptic devices that could be significant for building efficient neuromorphic systems are prospected.Aqueous zinc-based batteries (AZBs) attract tremendous attention due to the abundant and rechargeable zinc anode. Nonetheless, the requirement of high energy and power densities raises great challenge for the cathode development. Herein we construct an aqueous zinc ion capacitor possessing an unrivaled combination of high energy and power characteristics by employing a unique dual-ion adsorption mechanism in the cathode side. Through a templating/activating co-assisted carbonization procedure, a routine protein-rich biomass transforms into defect-rich carbon with immense surface area of 3657.5 m2 g-1 and electrochemically active heteroatom content of 8.0 at%. Comprehensive characterization and DFT calculations reveal that the obtained carbon cathode exhibits capacitive charge adsorptions toward both the cations and anions, which regularly occur at the specific sites of heteroatom moieties and lattice defects upon different depths of discharge/charge. The dual-ion adsorption mechanism endows the assembled cells with maximum capacity of 257 mAh g-1 and retention of 72 mAh g-1 at ultrahigh current density of 100 A g-1 (400 C), corresponding to the outstanding energy and power of 168 Wh kg-1 and 61,700 W kg-1. Furthermore, practical battery configurations of solid-state pouch and cable-type cells display excellent reliability in electrochemistry as flexible and knittable power sources.Semiconducting piezoelectric α-In2Se3 and 3R MoS2 have attracted tremendous attention due to their unique electronic properties. Artificial van der Waals (vdWs) heterostructures constructed with α-In2Se3 and 3R MoS2 flakes have shown promising applications in optoelectronics and photocatalysis. Here, we present the first flexible α-In2Se3/3R MoS2 vdWs p-n heterojunction devices for photodetection from the visible to near infrared region. These heterojunction devices exhibit an ultrahigh photoresponsivity of 2.9 × 103 A W-1 and a substantial specific detectivity of 6.2 × 1010 Jones under a compressive strain of - 0.26%. The photocurrent can be increased by 64% under a tensile strain of + 0.35%, due to the heterojunction energy band modulation by piezoelectric polarization charges at the heterojunction interface. This work demonstrates a feasible approach to enhancement of α-In2Se3/3R MoS2 photoelectric response through an appropriate mechanical stimulus.As bifunctional oxygen evolution/reduction electrocatalysts, transition-metal-based single-atom-doped nitrogen-carbon (NC) matrices are promising successors of the corresponding noble-metal-based catalysts, offering the advantages of ultrahigh atom utilization efficiency and surface active energy. However, the fabrication of such matrices (e.g., well-dispersed single-atom-doped M-N4/NCs) often requires numerous steps and tedious processes. Herein, ultrasonic plasma engineering allows direct carbonization in a precursor solution containing metal phthalocyanine and aniline. When combining with the dispersion effect of ultrasonic waves, we successfully fabricated uniform single-atom M-N4 (M = Fe, Co) carbon catalysts with a production rate as high as 10 mg min-1. The Co-N4/NC presented a bifunctional potential drop of ΔE = 0.79 V, outperforming the benchmark Pt/C-Ru/C catalyst (ΔE = 0.88 V) at the same catalyst loading. Theoretical calculations revealed that Co-N4 was the major active site with superior O2 adsorption-desorption mechanisms. In a practical Zn-air battery test, the air electrode coated with Co-N4/NC exhibited a specific capacity (762.8 mAh g-1) and power density (101.62 mW cm-2), exceeding those of Pt/C-Ru/C (700.8 mAh g-1 and 89.16 mW cm-2, respectively) at the same catalyst loading. Moreover, for Co-N4/NC, the potential difference increased from 1.16 to 1.47 V after 100 charge-discharge cycles. The proposed innovative and scalable strategy was concluded to be well suited for the fabrication of single-atom-doped carbons as promising bifunctional oxygen evolution/reduction electrocatalysts for metal-air batteries.Although CoO is a promising electrode material for supercapacitors due to its high theoretical capacitance, the practical applications still suffering from inferior electrochemical activity owing to its low electrical conductivity, poor structural stability and inefficient nanostructure. Herein, we report a novel Cu0/Cu+ co-doped CoO composite with adjustable metallic Cu0 and ion Cu+ via a facile strategy. Through interior (Cu+) and exterior (Cu0) decoration of CoO, the electrochemical performance of CoO electrode has been significantly improved due to both the beneficial flower-like nanostructure and the synergetic effect of Cu0/Cu+ co-doping, which results in a significantly enhanced specific capacitance (695 F g-1 at 1 A g-1) and high cyclic stability (93.4% retention over 10,000 cycles) than pristine CoO. Furthermore, this co-doping strategy is also applicable to other transition metal oxide (NiO) with enhanced electrochemical performance. In addition, an asymmetric hybrid supercapacitor was assembled using the Cu0/Cu+ co-doped CoO electrode and active carbon, which delivers a remarkable maximal energy density (35 Wh kg-1), exceptional power density (16 kW kg-1) and ultralong cycle life (91.5% retention over 10,000 cycles). Theoretical calculations further verify that the co-doping of Cu0/Cu+ can tune the electronic structure of CoO and improve the conductivity and electron transport. learn more This study demonstrates a facile and favorable strategy to enhance the electrochemical performance of transition metal oxide electrode materials.Ammonia detection possesses great potential in atmosphere environmental protection, agriculture, industry, and rapid medical diagnosis. However, it still remains a great challenge to balance the sensitivity, selectivity, working temperature, and response/recovery speed. In this work, Berlin green (BG) framework is demonstrated as a highly promising sensing material for ammonia detection by both density functional theory simulation and experimental gas sensing investigation. Vacancy in BG framework offers abundant active sites for ammonia absorption, and the absorbed ammonia transfers sufficient electron to BG, arousing remarkable enhancement of resistance. Pristine BG framework shows remarkable response to ammonia at 50-110 °C with the highest response at 80 °C, which is jointly influenced by ammonia's absorption onto BG surface and insertion into BG lattice. The sensing performance of BG can hardly be achieved at room temperature due to its high resistance. Introduction of conductive Ti3CN MXene overcomes the high resistance of pure BG framework, and the simply prepared BG/Ti3CN mixture shows high selectivity to ammonia at room temperature with satisfying response/recovery speed.