Singletonwrenn1711
Keeping track of a hydrated proton in dynamics simulations is important and nontrivial. Here, we report two revised algorithms for the proton indicator, a pseudo-atom whose position approximates the location of an excess proton diffusing via the Grotthuss mechanism in aqueous solution. The new methods describe the delocalized proton as a structural defect. Encouragingly, in test simulations of a hydrated proton in bulk water, the new algorithms substantially outperform the original scheme by significantly reducing large displacements in the indicator positions upon donor switch, yielding smoother trajectories that effectively track the movement of the solvated proton.We study propagation of avalanches in a certain excitable network. The model is a particular case of the one introduced in [24], and is mathematically equivalent to an endemic variation of the Reed-Frost epidemic model introduced in [28]. Two types of heuristic approximation are frequently used for models of this type in applications, a branching process for avalanches of a small size at the beginning of the process and a deterministic dynamical system once the avalanche spreads to a significant fraction of a large network. In this paper we prove several results concerning the exact relation between the avalanche model and these limits, including rates of convergence and rigorous bounds for common characteristics of the model.Among tool kits to combat the coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2, school closures are one of the most frequent non-pharmaceutical interventions. However, school closures bring about substantial costs, such as learning loss. To date, studies have not reached a consensus about the effectiveness of these policies at mitigating community transmission, partly because they lack rigorous causal inference. Here we assess the causal effect of school closures in Japan on reducing the spread of COVID-19 in spring 2020. By matching each municipality with open schools to a municipality with closed schools that is the most similar in terms of potential confounders, we can estimate how many cases the municipality with open schools would have had if it had closed its schools. We do not find any evidence that school closures in Japan reduced the spread of COVID-19. Our null results suggest that policies on school closures should be reexamined given the potential negative consequences for children and parents.The role that traditional and hybrid in-person schooling modes contribute to the community incidence of SARS-CoV-2 infections relative to fully remote schooling is unknown. We conducted an event study using a retrospective nationwide cohort evaluating the effect of school mode on SARS-CoV-2 cases during the 12 weeks after school opening (July-September 2020, before the Delta variant was predominant), stratified by US Census region. After controlling for case rate trends before school start, state-level mitigation measures and community activity level, SARS-CoV-2 incidence rates were not statistically different in counties with in-person learning versus remote school modes in most regions of the United States. In the South, there was a significant and sustained increase in cases per week among counties that opened in a hybrid or traditional mode versus remote, with weekly effects ranging from 9.8 (95% confidence interval (CI) = 2.7-16.1) to 21.3 (95% CI = 9.9-32.7) additional cases per 100,000 persons, driven by increasing cases among 0-9 year olds and adults. Schools can reopen for in-person learning without substantially increasing community case rates of SARS-CoV-2; however, the impacts are variable. Additional studies are needed to elucidate the underlying reasons for the observed regional differences more fully.Today, the eastern African hydroclimate is tightly linked to fluctuations in the zonal atmospheric Walker circulation1,2. A growing body of evidence indicates that this circulation shaped hydroclimatic conditions in the Indian Ocean region also on much longer, glacial-interglacial timescales3-5, following the development of Pacific Walker circulation around 2.2-2.0 million years ago (Ma)6,7. However, continuous long-term records to determine the timing and mechanisms of Pacific-influenced climate transitions in the Indian Ocean have been unavailable. Here we present a seven-million-year-long record of wind-driven circulation of the tropical Indian Ocean, as recorded in Mozambique Channel Throughflow (MCT) flow-speed variations. We show that the MCT flow speed was relatively weak and steady until 2.1 ± 0.1 Ma, when it began to increase, coincident with the intensification of the Pacific Walker circulation6,7. Strong increases during glacial periods, which reached maxima after the Mid-Pleistocene Transition (0.9-0.64 Ma; ref. 8), were punctuated by weak flow speeds during interglacial periods. We provide a mechanism explaining that increasing MCT flow speeds reflect synchronous development of the Indo-Pacific Walker cells that promote aridification in Africa. Our results suggest that after about 2.1 Ma, the increasing aridification is punctuated by pronounced humid interglacial periods. This record will facilitate testing of hypotheses of climate-environmental drivers for hominin evolution and dispersal.Excitonic insulators (EIs) arise from the formation of bound electron-hole pairs (excitons)1,2 in semiconductors and provide a solid-state platform for quantum many-boson physics3-8. Strong exciton-exciton repulsion is expected to stabilize condensed superfluid and crystalline phases by suppressing both density and phase fluctuations8-11. Although spectroscopic signatures of EIs have been reported6,12-14, conclusive evidence for strongly correlated EI states has remained elusive. Here we demonstrate a strongly correlated two-dimensional (2D) EI ground state formed in transition metal dichalcogenide (TMD) semiconductor double layers. A quasi-equilibrium spatially indirect exciton fluid is created when the bias voltage applied between the two electrically isolated TMD layers is tuned to a range that populates bound electron-hole pairs, but not free electrons or holes15-17. Capacitance measurements show that the fluid is exciton-compressible but charge-incompressible-direct thermodynamic evidence of the EI. The fluid is also strongly correlated with a dimensionless exciton coupling constant exceeding 10. We construct an exciton phase diagram that reveals both the Mott transition and interaction-stabilized quasi-condensation. www.selleckchem.com/mTOR.html Our experiment paves the path for realizing exotic quantum phases of excitons8, as well as multi-terminal exciton circuitry for applications18-20.Access to safely managed drinking water (SMDW) remains a global challenge, and affects 2.2 billion people1,2. Solar-driven atmospheric water harvesting (AWH) devices with continuous cycling may accelerate progress by enabling decentralized extraction of water from air3-6, but low specific yields (SY) and low daytime relative humidity (RH) have raised questions about their performance (in litres of water output per day)7-11. However, to our knowledge, no analysis has mapped the global potential of AWH12 despite favourable conditions in tropical regions, where two-thirds of people without SMDW live2. Here we show that AWH could provide SMDW for a billion people. Our assessment-using Google Earth Engine13-introduces a hypothetical 1-metre-square device with a SY profile of 0.2 to 2.5 litres per kilowatt-hour (0.1 to 1.25 litres per kilowatt-hour for a 2-metre-square device) at 30% to 90% RH, respectively. Such a device could meet a target average daily drinking water requirement of 5 litres per day per person14. We plot the impact potential of existing devices and new sorbent classes, which suggests that these targets could be met with continued technological development, and well within thermodynamic limits. Indeed, these performance targets have been achieved experimentally in demonstrations of sorbent materials15-17. Our tools can inform design trade-offs for atmospheric water harvesting devices that maximize global impact, alongside ongoing efforts to meet Sustainable Development Goals (SDGs) with existing technologies.Photovoltaic (PV) solar energy generating capacity has grown by 41 per cent per year since 20091. Energy system projections that mitigate climate change and aid universal energy access show a nearly ten-fold increase in PV solar energy generating capacity by 20402,3. Geospatial data describing the energy system are required to manage generation intermittency, mitigate climate change risks, and identify trade-offs with biodiversity, conservation and land protection priorities caused by the land-use and land-cover change necessary for PV deployment. Currently available inventories of solar generating capacity cannot fully address these needs1-9. Here we provide a global inventory of commercial-, industrial- and utility-scale PV installations (that is, PV generating stations in excess of 10 kilowatts nameplate capacity) by using a longitudinal corpus of remote sensing imagery, machine learning and a large cloud computation infrastructure. We locate and verify 68,661 facilities, an increase of 432 per cent (in number of facilities) on previously available asset-level data. With the help of a hand-labelled test set, we estimate global installed generating capacity to be 423 gigawatts (-75/+77 gigawatts) at the end of 2018. Enrichment of our dataset with estimates of facility installation date, historic land-cover classification and proximity to vulnerable areas allows us to show that most of the PV solar energy facilities are sited on cropland, followed by aridlands and grassland. Our inventory could aid PV delivery aligned with the Sustainable Development Goals.Measurements of the atmospheric carbon (C) and oxygen (O) relative to hydrogen (H) in hot Jupiters (relative to their host stars) provide insight into their formation location and subsequent orbital migration1,2. Hot Jupiters that form beyond the major volatile (H2O/CO/CO2) ice lines and subsequently migrate post disk-dissipation are predicted have atmospheric carbon-to-oxygen ratios (C/O) near 1 and subsolar metallicities2, whereas planets that migrate through the disk before dissipation are predicted to be heavily polluted by infalling O-rich icy planetesimals, resulting in C/O less then 0.5 and super-solar metallicities1,2. Previous observations of hot Jupiters have been able to provide bounded constraints on either H2O (refs. 3-5) or CO (refs. 6,7), but not both for the same planet, leaving uncertain4 the true elemental C and O inventory and subsequent C/O and metallicity determinations. Here we report spectroscopic observations of a typical transiting hot Jupiter, WASP-77Ab. From these, we determine the atmospheric gas volume mixing ratio constraints on both H2O and CO (9.5 × 10-5-1.5 × 10-4 and 1.2 × 10-4-2.6 × 10-4, respectively). From these bounded constraints, we are able to derive the atmospheric C/H ([Formula see text] × solar) and O/H ([Formula see text] × solar) abundances and the corresponding atmospheric carbon-to-oxygen ratio (C/O = 0.59 ± 0.08; the solar value is 0.55). The sub-solar (C+O)/H ([Formula see text] × solar) is suggestive of a metal-depleted atmosphere relative to what is expected for Jovian-like planets1 while the near solar value of C/O rules out the disk-free migration/C-rich2 atmosphere scenario.