Borgkatz5660

Z Iurium Wiki

Verze z 13. 9. 2024, 18:32, kterou vytvořil Borgkatz5660 (diskuse | příspěvky) (Založena nová stránka s textem „An efficient arylsulfonylation/cyclization of 2-aryl-N-methacryloyl indoles with potassium metabisulfite and aryldiazonium tetrafluoroborates was developed…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

An efficient arylsulfonylation/cyclization of 2-aryl-N-methacryloyl indoles with potassium metabisulfite and aryldiazonium tetrafluoroborates was developed. A series of variously substituted arylsulfonyl indolo[2,1-a]isoquinolin-6(5H)-ones were formed in moderate to good yields via utilization of the nature abundant inorganic salt potassium metabisulfite as a SO2 surrogate. Additionally, this three-component protocol can also be employed for the synthesis of arylsulfonyl-substituted benzimidazo-[2,1-a]isoquinolin-6(5H)-ones.3-Aryllawsones are well known for their wide range of applications in medicinal chemistry, but their synthesis has always remained challenging as no comprehensive protocol has been outlined to date. Owing to their structural importance, we synthesized various 3-aryllawsones with high regioselectivity from simple lawsone and aldehydes in a seven-step double-cascade one-pot reaction through the combination of organocatalytic Ramachary reductive coupling and Hooker oxidation reactions. The commercial availability of the starting materials, diverse substrate scope, possibility of a one- or two-pot approach, regioselectivity of alkyl transfer (with mechanistic proof provided via X-ray crystal structure analysis), and numerous medicinal applications of 3-aryllawsones are the key attractions of this work.The development of multifunctional films with a high permeability has been of great concern for effective separation of complex aqueous contaminants, especially in the face of zero or near-zero release regulations. Inspired by the natural structure of sandy soils, polydopamine-wrapped/connected polypyrrole sub-micron spheres (PPSM) were closely packed onto a polypyrrole-coated bacterial cellulose (PBC) support, by which a new two-layered PBC/PPSM composite film formed with graded nanofluidic channels. Interestingly, after being soaked in complex water environments of ethanol, acids, bases, heat, cold and high salinity, or else bended/folded for more than 10 times, the structure and performance of this film still stayed the same, validating its high structural stability and flexibility. MEDICA16 cell line Even in a high salinity environment over seawater, this PBC/PPSM film exhibits a dye-separation capacity of almost 100% with a surprisingly superhigh water permeance over one thousand L h-1 m-2 bar-1, one or two magnitudes higher than that of the related films reported in the literature. Meanwhile, the ability for effective oil-water-separation was also validated. Besides the superhydrophilicity and underwater superoleophobicity, the synapse-like-structure-induced graded nanofluidic channels are also proposed to play a key role for rendering such an outstandingly comprehensive performance of the film by greatly overcoming fluid resistance and reducing permeation viscosity.Non-contact atomic force microscopy (AFM) with CO-functionalized tips allows visualization of the chemical structure of adsorbed molecules and identify individual inter- and intramolecular bonds. This technique enables in-depth studies of on-surface reactions and self-assembly processes. Herein, we analyze the suitability of qPlus sensors, which are commonly used for such studies, for the application of modern multifrequency AFM techniques. Two different qPlus sensors were tested for submolecular resolution imaging via actuating torsional and flexural higher eigenmodes and via bimodal AFM. The torsional eigenmode of one of our sensors is perfectly suited for performing lateral force microscopy (LFM) with single bond resolution. The obtained LFM images agree well with images from the literature, which were scanned with customized qPlus sensors that were specifically designed for LFM. The advantage of using a torsional eigenmode is that the same molecule can be imaged either with a vertically or laterally oscillating tip without replacing the sensor simply by actuating a different eigenmode. Submolecular resolution is also achieved by actuating the 2nd flexural eigenmode of our second sensor. In this case, we observe particular contrast features that only appear in the AFM images of the 2nd flexural eigenmode but not for the fundamental eigenmode. With complementary laser Doppler vibrometry measurements and AFM simulations we can rationalize that these contrast features are caused by a diagonal (i.e. in-phase vertical and lateral) oscillation of the AFM tip.Two new photo-switchable terphenylthiazole molecules are synthesized and self-assembled as monolayers on Au and on ferromagnetic Co electrodes. The electron transport properties probed by conductive atomic force microscopy in ultra-high vacuum reveal a larger conductance of the light-induced closed (c) form than for the open (o) form. We report an unprecedented conductance ratio of up to 380 between the closed and open forms on Co for the molecule with the anchoring group (thiol) on the side of the two N atoms of the thiazole unit. This result is rationalized by Density Functional Theory (DFT) calculations coupled to the Non-Equilibrium Green's function (NEGF) formalism. These calculations show that the high conductance in the closed form is due to a strong electronic coupling between the terphenylthiazole molecules and the Co electrode that manifests by a resonant transmission peak at the Fermi energy of the Co electrode with a large broadening. This behavior is not observed for the same molecules self-assembled on gold electrodes. These high conductance ratios make these Co-based molecular junctions attractive candidates to develop and study switchable molecular spintronic devices.The organogermanium and organotin trihydrides (TbbEH3) [E = Ge (3), Sn (7)] with the Tbb substituent were synthesized by hydride substitution (Tbb = 2,6-[CH(SiMe3)2]2-4-(t-Bu)C6H2). Deprotonation of the organoelement trihydrides 3 and 7 was studied in reaction with bases MeLi, BnK and LDA (Bn = benzyl, LDA = lithium diisopropylamide) to yield the deprotonation products (8-11) as lithium or potassium salts. Hydride abstraction from TbbSnH3 using the trityl salt [Ph3C][Al(OCCF33)4] gives the salt [TbbSnH2][Al(OCCF33)4] (12) which was stabilized by thf donor ligands [TbbSnH2(thf)2][Al(OCCF33)4] (13). Tintrihydride 7 reacts with trialkylamine Et2MeN to give as the product of a reductive elimination of hydrogen the distannane (TbbSnH2)2 (14). Transfer of hydrogen was observed in reaction of trihydrides TbbEH3 (E = Ge, Sn) and Ar*GeH3 with N-heterocyclic carbene (NHC). The NHC adduct TbbSnH(iPrNHC) (15) was synthesized at rt and the germanium hydrides exhibit hydrogen transfer at higher temperatures to give Ar*GeH(MeNHC) (16) and TbbGeH(MeNHC) (17).Recently, ternary electrochemiluminescence (ECL) system has become a hot research topic due to its great potential for improving ECL efficiency by promoting the generation of intermediates. However, it is still a great challenge to increase the utilization rate of intermediates in a ternary ECL system. Herein, we propose a strategy to increase the utilization rate of intermediates by designing pyrenecarboxaldehyde (Pyc) encapsulated porous titania (pTiO2) nanospheres (Pyc@pTiO2) as ECL nanoreactors for an integrated ternary (luminophore/coreactant/co-reaction accelerator, Pyc/S2O82-/TiO2) ECL system construction. Specifically, pTiO2 acted as an ECL co-reaction accelerator, in which Pyc could obtain electrons from the conduction band of TiO2 to produce more SO4˙-, increasing its emissions. Simultaneously, pTiO2 could provide confined reaction spaces to effectively shorten the diffusion distance, extend the lifetime of free radicals, increase the utilization rate of intermediates and improve the efficiency of the ternary ECL system. As a proof of concept, the Pyc@pTiO2 nanoreactors-based sensing platform was successfully constructed to sensitively monitor cellular GSH levels. Overall, this work for the first time proposed an avenue to increase the utilization rate of intermediates in a ternary ECL system, which opened a new route for ECL biosensing in cell analysis applications.High valent metal-oxo intermediates are versatile oxidants known to facilitate both oxygen atom transfer (OAT) and hydrogen atom transfer (HAT) reactions in nature. In addition to performing essential yet challenging biological reactions, these intermediates are known for their selectivity in favoring the formation of one oxidation product. To understand the basis for this selectivity, we explore the role of equatorial ligand field perturbations in MnIV-oxo complexes on chemoselectivity in cyclohexene oxidation. We also examine reactions of MnIV-oxo complexes with cyclohexene-d10, cyclooctene, and styrene. Within this series, the product distribution in olefin oxidation is highly dependent on the coordination environment of the MnIV-oxo unit. While MnIV-oxo complexes with sterically encumbered, and slightly tilted, MnO units favor CC epoxidation products in cyclohexene oxidation, a less encumbered analogue prefers to cleave allylic C-H bonds, resulting in cyclohexenol and cyclohexenone formation. These conclusions are drawn from GC-MS product analysis of the reaction mixture, changes in the UV-vis absorption spectra, and kinetic analyses. DFT computations establish a trend in thermodynamic properties of the MnIV-oxo complexes and their reactivity towards olefin oxidation on the basis of the MnO bond dissociation free energy (BDFE). The most reactive MnIV-oxo adduct from this series oxidizes cyclohexene-d10, cyclooctene, and styrene to give corresponding epoxides as the only detected products. Collectively, these results suggest that the chemoselectivity obtained in oxidation of olefins is controlled by both the coordination environment around the MnO unit, which modulates the MnO BDFE, and the BDFEs of the allylic C-H bond of the olefins.Spectroscopic and computational examination of the neutral tris-dioxolene complex [V(dbcat)3] (dbcat2- = 3,6-di-tert-butylcatecholate) reveals a Class III mixed-valent ground state. The radical is stabilised by delocalisation across the ligands mediated by the energy matched d orbital manifold of the V(V) centre. This electronic structure is compared to the tris-dithiolene and tris-diimine analogues that possess V(IV) and V(II) ions, respectively.Construction of heterostructures is an effective way to improve photo-induced charge separation and photocatalytic performance. Among various structures, type II and direct Z-scheme heterojunctions with distinct charge separation mechanisms are the two typical representatives attracting much research attention. Here we prepared type II and Z-scheme CdS/g-C3N4 nanocomposites by thermal treatment and self-assembly chemisorption methods, respectively. High-resolution microscopy techniques including (scanning) transmission electron microscopy (TEM/STEM) and super-resolution fluorescence microscopy (SRM) were used to investigate the charge distribution and flow mechanism. The charge tracking results reveal that the nanocomposite prepared by thermal treatment has a type II heterostructure with charges flowing in the opposite direction, while the self-assembly sample possesses a Z-scheme structure. It was found that the type II system exhibited the lowest charge migration resistance and the best charge separation ability and stability of photoactivity, leading to the highest H2 generation rate of 2410 μmol h-1 g-1.

Autoři článku: Borgkatz5660 (Joyce Bengtson)