Halekrag1281

Z Iurium Wiki

Verze z 13. 9. 2024, 16:49, kterou vytvořil Halekrag1281 (diskuse | příspěvky) (Založena nová stránka s textem „Malignant tumor cells exhibit mitochondrial alterations and are also influenced by biobehavioral processes, but the intersection of biobehavioral factors a…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Malignant tumor cells exhibit mitochondrial alterations and are also influenced by biobehavioral processes, but the intersection of biobehavioral factors and mitochondria in malignant tumors remains unexplored. Here we examined multiple biochemical and molecular markers of mitochondrial content and function in benign tissue and in high-grade epithelial ovarian carcinoma (EOC) in parallel with exploratory analyses of biobehavioral factors. First, analysis of a publicly-available database (n = 1435) showed that gene expression of specific mitochondrial proteins in EOC is associated with survival. Quantifying multiple biochemical and molecular markers of mitochondrial content and function in tissue from 51 patients with benign ovarian masses and 128 patients with high-grade EOC revealed that compared to benign tissue, EOCs exhibit 3.3-8.4-fold higher mitochondrial content and respiratory chain enzymatic activities (P  less then  0.001) but similar mitochondrial DNA (mtDNA) levels (- 3.1%), documenting abnormal mitochondrial phenotypes in EOC. Mitochondrial respiratory chain activity was also associated with interleukin-6 (IL-6) levels in ascites. In benign tissue, negative biobehavioral factors were inversely correlated with mitochondrial content and respiratory chain activities, whereas positive biobehavioral factors tended to be positively correlated with mitochondrial measures, although effect sizes were small to medium (r = - 0.43 to 0.47). In contrast, serous EOCs showed less pronounced biobehavioral-mitochondrial correlations. These results document abnormal mitochondrial functional phenotypes in EOC and warrant further research on the link between biobehavioral factors and mitochondria in cancer.The recognition, disambiguation, and expansion of medical abbreviations and acronyms is of upmost importance to prevent medically-dangerous misinterpretation in natural language processing. To support recognition, disambiguation, and expansion, we present the Medical Abbreviation and Acronym Meta-Inventory, a deep database of medical abbreviations. A systematic harmonization of eight source inventories across multiple healthcare specialties and settings identified 104,057 abbreviations with 170,426 corresponding senses. Automated cross-mapping of synonymous records using state-of-the-art machine learning reduced redundancy, which simplifies future application. Additional features include semi-automated quality control to remove errors. The Meta-Inventory demonstrated high completeness or coverage of abbreviations and senses in new clinical text, a substantial improvement over the next largest repository (6-14% increase in abbreviation coverage; 28-52% increase in sense coverage). To our knowledge, the Meta-Inventory is the most complete compilation of medical abbreviations and acronyms in American English to-date. The multiple sources and high coverage support application in varied specialties and settings. This allows for cross-institutional natural language processing, which previous inventories did not support. The Meta-Inventory is available at https//bit.ly/github-clinical-abbreviations .In the era of immunotherapy, there lacks of a reliable genomic predictor to identify optimal patient populations in combined radiotherapy and immunotherapy (CRI). The purpose of this study is to investigate whether genomic scores defining radiosensitivity are associated with immune response. Genomic data from Merged Microarray-Acquired dataset (MMD) were established and the Cancer Genome Atlas (TCGA) were obtained. Based on rank-based regression model including 10 genes, radiosensitivity index (RSI) was calculated. A total of 12832 primary tumours across 11 major cancer types were analysed for the association with DNA repair, cellular stemness, macrophage polarisation, and immune subtypes. Additional 585 metastatic tissues were extracted from MET500. RSI was stratified into RSI-Low and RSI-High by a cutpoint of 0.46. Proteomic differential analysis was used to identify significant proteins according to RSI categories. Gene Set Variance Analysis (GSVA) was applied to measure the genomic pathway activity (18 genes for T-cell inflamed activity). Kaplan-Meier analysis was performed for survival analysis. RSI was significantly associated with homologous DNA repair, cancer stemness and immune-related molecular features. Lower RSI was associated with higher fraction of M1 macrophage. Differential proteomic analysis identified significantly higher TAP2 expression in RSI-Low colorectal tumours. In the TCGA cohort, dominant interferon-γ (IFN-γ) response was characterised by low RSI and predicted better response to programmed cell death 1 (PD-1) blockade. In conclusion, in addition to radiation response, our study identified RSI to be associated with various immune-related features and predicted response to PD-1 blockade, thus, highlighting its potential as a candidate biomarker for CRI.Spatiotemporal compartmentation of calcium dynamics is critical for neuronal function, particularly in postsynaptic spines. This exquisite level of Ca2+ compartmentalization is achieved through the storage and release of Ca2+ from various intracellular organelles particularly the endoplasmic reticulum (ER) and the mitochondria. Mitochondria and ER are established storage organelles controlling Ca2+ dynamics in neurons. Mitochondria also generate a majority of energy used within postsynaptic spines to support the downstream events associated with neuronal stimulus. selleckchem Recently, high resolution microscopy has unveiled direct contact sites between the ER and the mitochondria (MERCs), which directly channel Ca2+ release from the ER into the mitochondrial membrane. In this study, we develop a computational 3D reaction-diffusion model to investigate the role of MERCs in regulating Ca2+ and ATP dynamics. This spatiotemporal model accounts for Ca2+ oscillations initiated by glutamate stimulus of metabotropic and ionotropic glutamate receptors and Ca2+ changes in four different compartments cytosol, ER, mitochondria, and the MERC microdomain. Our simulations predict that the organization of these organelles and inter-organellar contact sites play a key role in modulating Ca2+ and ATP dynamics.We further show that the crosstalk between geometry (mitochondria and MERC) and metabolic parameters (cytosolic ATP hydrolysis, ATP generation) influences the neuronal energy state. Our findings shed light on the importance of organelle interactions in predicting Ca2+ dynamics in synaptic signaling. Overall, our model predicts that a combination of MERC linkage and mitochondria size is necessary for optimal ATP production in the cytosol.

Autoři článku: Halekrag1281 (MacMillan Zacho)