Phelpsbalslev2380

Z Iurium Wiki

Verze z 13. 9. 2024, 16:08, kterou vytvořil Phelpsbalslev2380 (diskuse | příspěvky) (Založena nová stránka s textem „7 ppm and 23.1 ppm higher, respectively, than the evolved cyanide method. Our results reaffirm the need for the ongoing testing of cassava food products, e…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

7 ppm and 23.1 ppm higher, respectively, than the evolved cyanide method. Our results reaffirm the need for the ongoing testing of cassava food products, especially ready-to-eat products whose cyanide content will not be reduced before consumption.The present study aims to describe colloidal and acid gelling properties of mixed suspensions of pea and milk proteins. Mixed protein suspensions were prepared by adding pea protein isolate to rehydrated skimmed milk (3% w/w protein) to generate four mixed samples at 5, 7, 9, and 11% w/w total protein. Skimmed milk powder was also used to prepare four pure milk samples at the same protein concentrations. The samples were analyzed in regard to their pH, viscosity, color, percentage of sedimentable material, heat and ethanol stabilities, and acid gelling properties. Mixed suspensions were darker and presented higher pH, viscosity, and percentage of sedimentable material than milk samples. Heat and ethanol stabilities were similar for both systems and were reduced as a function of total protein concentration. Small oscillation rheology and induced syneresis data showed that the presence of pea proteins accelerated acid gel formation but weakened the final structure of the gels. In this context, the results found in the present work contributed to a better understanding of mixed dairy/plant protein functionalities and the development of new food products.Nanotechnology has offered a wide range of opportunities for the development and application of structures, materials, or systems with new properties in the food industry in recent years [...].Recently, many manufacturers have been developing or producing imitation crab sticks (ICSs) that are highly similar to real snow crab leg meat (RC). This study evaluated the similarities between commercial ICSs and RC based on the analysis of physicochemical and sensory properties. Normal ICS (NS) and premium ICSs either with real crab leg meat (PS-RC) or without it (PS) were compared with RC. The sensory evaluation results showed that PS and NS had the highest and lowest levels of similarity to RC, respectively. The carbohydrate contents of ICSs (10-23%) were higher than that of RC (0.5%). Among ICSs, PS showed more similarity with RC than NS and PS-RC in terms of gel strength and texture profiles. PS-RC and PS showed a microstructural pattern that slightly imitated the muscle fiber arrangement of RC. The electric tongue analysis of taste compounds, such as sugars, free amino acids, and nucleotides, showed that the taste profile of ICSs is distinctly different from that of RC. The electronic nose analysis identified 32 volatile compounds, while the principal component analysis using electronic nose data successfully distinguished three clusters PS-RC and PS, RC, and NS. Our results could provide useful information for the development of ICSs with higher similarity to RC.Celiac disease (CD) is a multifactorial autoimmune enteropathy with a prevalence greater than 1% in the pediatric population. The only therapy for CD patients is a strict gluten-free diet (GFD). Gluten-free food contamination by other cereals during packaging and cooking or accidental ingestion of gluten may cause several intestinal and extraintestinal symptoms in CD patients. Therefore, the monitoring of gluten contamination in food and assessing the level of ingested gluten by analytical biomarkers has been of great interest in recent years. To this aim, small gluten immunogenic peptides (GIPs) obtained by the hydrolysis of gluten and present in urine and feces have been studied as biomarkers of gluten intake and to monitor adherence to GFD by CD patients. More recently, the use of circulating, fecal and urinary miRNAs has emerged as a novel diagnostic tool that can be potentially applied to assess adherence to GFD. Moreover, the presence of GIPs and miRNAs in both feces and urine suggests a similar excretion modality and the possibility of using urinary miRNAs, similarly to GIPs, as potential biomarkers of GFD in CD patients.Rice grain quality is a complex trait that includes processing, appearance, eating, cooking, and nutrition components. The amylose content (AC) in the rice endosperm affects the eating and cooking quality along with the appearance of milled rice. In this study, four indica rice varieties with different ACs were used to study the factors affecting endosperm transparency along with the physical and chemical characteristics and eating quality of translucent endosperm varieties. Endosperm transparency was positively correlated with water content and negatively correlated with the cumulative area of cavities within starch granules. The indica landrace 28Zhan had a translucent endosperm and exhibited good taste. Based on starch fine structure analysis, long-chain amylopectin and the B2 chain of amylopectin might be major contributors to the good taste and relatively slow digestion of this landrace.This study aimed to evaluate the sensory profile of gluten-free bread with Amorphophallus konjac (AK) flour in different concentrations. This experimental study is divided into three steps preparation of the gluten-free bread formulations, sensory analysis, and statistical analysis. The addition of Konjac flour in a gluten-free bread formulation was tested in different proportions, 12.5%, 25%, 37.5%, and 50% of the flour content. The checking all-that-apply (CATA) was conducted with 110 panelists; among these, 43 were consumers of gluten-free bread. Sensory analysis was conducted using a 9-point hedonic scale for color, aroma, texture, flavor, appearance, and overall acceptability. The AK flour influenced the sensory characteristics of gluten-free bread. Bread with characteristics closer to those found in bread with gluten was the one with 12.5% of konjac flour for both the acceptability analysis as the attributes raised through a detailed CATA map. The control sample is located next to features like dry appearance, dry texture and grainy, dark color, and salty. Therefore, 12.5% AK gluten-free bread is closer to the characteristics of the control sample, such as light crust color, light crumb color, soft and moist texture, cohesion, and brightness. The bread with the highest percentage of overall consumer acceptance was 12.5% konjac with 93% and 96% acceptance among consumers and non-consumers of gluten-free bread, respectively.This study aimed to examine the physicochemical properties of 30% calcium (Ca)-reduced micellar casein 80% protein powders (RC-MCC) and the functional properties of the resultant dispersions. The calcium reduction in the micellar casein (MCC) powder was achieved by subjecting the liquid micellular casein obtained from the microfiltration of pasteurized skim milk to carbon dioxide (CO2) treatment before and during ultrafiltration. The CO2 injection was controlled to obtain a 0 and 30% reduction in calcium in the C-MCC (control) and RC-MCC powders, respectively. The MCC powders were tested for physicochemical properties such as chemical composition, particle size distribution, and bulk density. The MCC powders were reconstituted in deionized water to test the functional properties of the dispersions, i.e., solubility, viscosity, heat stability, emulsifying capacity, emulsion stability, foam capacity, and foam stability. The CO2 injection did not result in any significant differences in the composition except mineral contents, particularly calcium. The particle size and bulk density of RC-MCC powders were significantly (p < 0.05) lower than control powders. The RC-MCC powder dispersions showed increased heat stability compared to control, whereas no significant changes in viscosity and emulsification capacity were observed between the two dispersions. However, the emulsion stability and foam stability of RC-MCC dispersions were significantly lower than C-MCC dispersions. This study showed that by utilizing a novel microfiltration-CO2 injection-ultrafiltration process, 30% calcium-reduced MCC powder was commercially feasible. This research also provides a detailed understanding of the effect of calcium reduction on the functional properties of resultant MCC dispersions. It showed that calcium reduction could improve the solubility of the powders and heat stability and foam capacity of the dispersions.The Schinus molle tree is notoriously invasive in most parts of the world, and yet as a pseudospice, its berries potentially possess some significant health benefits which need to be explored. Therefore, polar metabolome of seed + husks (SH), husks (H), and de-hulled (DH) berries were profiled and quantified by untargeted metabolomics approach using UPLC-QTOF-MS. A total of 13 gallotannins, three phenolic acids, a phenolic acid glucoside, three phenolic acid esters, an organic acid, a gallotannin derivative, and nine flavonoids were detected and quantified. Phenolic acids ranged between 12.2-295.7; 4.9-77; and 89.7-1613.1 mg/kg in SH, DH seeds and H respectively. Flavonoids ranged between 1.8-267.5; 73.4-80.4; and 124-564.3 mg/kg in SH, DH seeds and H respectively. Gallotannins ranged between 1.1-146.6; 14.8-21.8; and 48.1-664.8 mg/kg in SH, DH seeds and H respectively. Feruloyltartaric A, quercetin 3-O-glucuronide, catechin digalloylshikimic acid B as well as digalloyl quinic acid were some of the dominant secondary metabolites revealed. These results indicate that S. molle berries are a rich source of secondary metabolites with elevated concentrations in the husks, while DH seeds possess lower concentrations to none. These findings open important insights into the potential of S. molle berries as a natural source of antioxidants for the food and pharmaceutical industries.The organic food industry in China has been developing fast with the increasing consumer demand for healthier, safer, and more nutritious foods since the epidemic outbreak. It is of great significance to understand the psychological preference of consumers for organic food and adjust the marketing strategy accordingly. In this study, we adopted the multi-group structural equation model (SEM) to analyze 571 questionnaire data and explored the effects of consumers' perception on the sensory appeal of organic food, perception on promotional stimulation, positive emotion, and perceived social value on the purchase intention of organic food. Based on the Stimulus-Organism-Response (S-O-R) model, this study divides the route affecting organic consumption behavior into the rational route and emotional route. It was proved that the emotional route (positive emotion) has a greater impact on the purchase intention of organic food than the rational route (perceived social value). In addition, there are different purchase intentions among different product types. Specifically, compared with organic tea, positive emotion has a greater effect on the purchase intention for organic rice. This study provides an important reference for the organic food-marketing strategy of enterprises.This study aimed to compare the microbial diversity in meatballs with or without blown pack spoilage (BPS) to determine the cause of BPS and to assess the synergistic effect of static magnetic field (SMF) and modified atmosphere packaging (MAP) to reduce the phenomenon of BPS. Results showed that the BPS group with a 2.26-fold larger volume and packaging containing 71.85% CO2 had Klebsiella spp. (46.05%) and Escherichia spp. (39.96%) as the dominant bacteria, which was different from the spoilage group. The results of isolation and identification of strains from the BPS group and their inoculation test confirmed that Klebsiella pneumoniae was the major strain-inducing BPS in meatballs due to its pack-swelling ability. click here SMF (5 mT) treatment combined with MAP (40%CO2 + 60%N2), which did not influence the sensory quality of meatballs, had a significant synergistic effect on preventing the increase in pack volume. Compared with the control group, this synergistic treatment effectively delayed bacterial growth, drop in pH, and the increase of TBARS.

Autoři článku: Phelpsbalslev2380 (Hendrix Hester)