Kraghmcintosh7213
Zero-dimensional (0D) all-inorganic/organic-inorganic metal halides, as emerging luminescent materials, have attracted unparalleled interest from versatile perspectives due to their unique crystallographic/electronic structures with isolated building units and fascinating optical characteristics. However, significant challenges still exist for 0D metal halides, including their chemical molecular design, photoluminescence (PL) mechanism, PL modification and applications. In this review, we summarize the 0D metal halides through the classification of all-inorganic and organic-inorganic hybrid metal halides, and further emphasize the unique role of B-site cations with different electronic configurations in the PL process. Furthermore, the PL mechanisms focusing on the self-trapped excitons (STEs) model and PL regulation engineering are examined to explore their extraordinary PL properties and further reveal new application prospects. This review aims to provide in-depth insight into the structure-luminescence-application relationship of 0D metal halides and pave the way for the realization of next-generation high-performance luminescent materials.Correction for 'Emerging per- and polyfluoroalkyl substances (PFAS) in human milk from Sweden and China' by Raed Awad et al., Environ. Sci. Processes Impacts, 2020, 22, 2023-2030, DOI 10.1039/D0EM00077A.Fe-Mimochrome VI*a is a synthetic peroxidase and peroxygenase, featuring two different peptides that are covalently-linked to deuteroheme. To perform a systematic structure/function correlation, we purposely shortened the distance between the distal peptide and the heme, allowing for the separation and characterization of two regioisomers. They differ in both His axial-ligand orientation, as determined by paramagnetic NMR shifts, and activity. These findings highlight that synthetic metalloenzymes may provide an efficient tool for disentangling the role of axial ligand orientation over peroxidase activity.Correction for 'In vivo migration of Fe3O4@polydopamine nanoparticle-labeled mesenchymal stem cells to burn injury sites and their therapeutic effects in a rat model' by Xiuying Li et al., Biomater. Sci., 2019, 7, 2861-2872, DOI 10.1039/C9BM00242A.The body weight-lowering properties of a multifunctional ingredient (MIX) based on conjugated linoleic acid at low doses, the flavonoids proanthocyanidins and anthocyanidins and the chicken feet hydrolysate Hpp11 have been previously reported. The aim of this study was to evaluate the effect of long-term administration of MIX on other cardiometabolic risk factors associated with metabolic syndrome (MetS) in rats fed a cafeteria diet (CAF). Male Wistar rats were fed CAF for 11 weeks, and during the last 3 weeks, animals were orally administered MIX or vehicle. Lipid tolerance tests were performed before and after MIX administration. At the end of the experimental period, serum and inguinal white adipose tissue (iWAT) metabolism were analyzed by metabolomics and biochemical approaches. The metabolite signature of serum and iWAT significantly changed after 3 weeks of MIX administration, suggesting an improvement in lipid and glucose homeostasis in these animals. In addition, MIX also exhibited significant antihypertensive properties. These results suggest that MIX could be a good candidate to ameliorate the cardiometabolic risk factors related to MetS.In industries and academic laboratories, several late transition metal-catalyzed prerequisite reactions are widely performed during single and multistep synthesis. However, besides the desired products, these reactions lead to the generation of numerous chemical waste materials, by-products, hazardous gases, and other poisonous materials, which are discarded in the environment. This is partly responsible for the creation of global warming, resulting in climate adversities. Thus, the development of environmentally benign, cheap, easily accessible, and earth-abundant metal catalysts is desirable to minimize these issues. Certainly, iron is one of the most important metals belonging to this family. The field of iron catalysis has been explored in the last two-three decades out of its rich chemistry depending on its oxidation states and ligand cooperation. Moreover, this field has been enriched by the promising development of iron-catalyzed reactions namely, C-H bond activation, including organometallic C-H activation and C-H functionalization via outer-sphere pathway, cross-dehydrogenative couplings, insertion reactions, cross-coupling reactions, hydrogenations including hydrogen borrowing reactions, hydrosilylation and hydroboration, addition reactions and substitution reactions. Thus, herein an inclusive overview of these reaction have been well documented.A systematic study on applied electric field effects (Eapp) on electron transfer along the peptides is very important for the regulation of electron transfer behaviors so as to realize the functions of proteins. In this work, we computationally investigated the uphill migration behaviors of excess electrons along the peptide chains under Eapp using the density functional theory method. We examined the electronic property changes of the model α-helical oligopeptides, the dynamics behavior of an excess electron along the peptide chains under Eapp opposite to the internal dipole field of peptides. We found that Eapp of different intensities can effectively modulate the electron-binding abilities, Frontier molecular orbital (FMO) energies and distributions, dipole moments and other corresponding properties with different degrees. The electron-binding abilities of α-helical oligopeptides revealed by vertical electron affinity and FMO energies decrease in weak Eapp and then increase greatly in high Eapp, while the dipole moments change mildly in weak Eapp and increase significantly until a threshold and then become gentle in high Eapp. Analysis of FMO and electron distributions indicates that an excess electron can migrate uphill from the N-terminus to the C-terminus of the α-helical peptides in an irregular jump mode as Eapp linearly increases. Another interesting finding is that α-helical peptides with diverse chain lengths have different sensitivities to Eapp. The longer the peptide is, the more obvious the effects of Eapp are. Additionally, compared to the Eapp effect on linear oligopeptides, we summarized the systematic rule about the Eapp effect on excess electron migration uphill along the peptide chains. Clearly, this work not only enriches the information of the Eapp effect on electronic properties and electron transfers in the helical peptides, but also provides a new perspective for modulating electron migration behaviors in protein electronics engineering.A convenient, effective, and low-cost method was developed for the determination of 38 pharmaceuticals and personal care products (PPCPs), including 19 antibiotics in surface water samples by lyophilization combined with liquid chromatography-tandem quadrupole mass spectrometry (LC-MS/MS). The components of the extraction solvent, the volume of the water sample, and the volume of extraction solvent were successively optimized. The analytes in 80 mL water samples were concentrated by lyophilization, eluted effectively by the solvent of 2 mL acetonitrile, 2 mL acetone, and 2 mL ultrapure water. The method detection limits ranged from 0.02 ng L-1 (caffeine) to 0.17 μg L-1 (glibenclamide). The recoveries of 30 analytes ranged from 40.0% (sulfaguanidine) to 124.4% (flumequine). The relative standard deviations of all analytes were below 21% except ciprofloxacin (29%). The performance of the optimized method was comparable to the solid phase extraction and ultrasonic extraction method with much less consumption of labor, organic solvent, and consumables. The developed method was successfully applied to surface river water, reservoir water, and effluent of the wastewater treatment plant.We demonstrate a loop-mediated isothermal amplification (LAMP) method to detect and amplify SARS-CoV-2 genetic sequences using a set of in-house designed initiators that target regions encoding the N protein. We were able to detect and amplify SARS-CoV-2 nucleic acids in the range of 62 to 2 × 105 DNA copies by this straightforward method. Using synthetic SARS-CoV-2 samples and RNA extracts from patients, we demonstrate that colorimetric LAMP is a quantitative method comparable in diagnostic performance to RT-qPCR (i.e., sensitivity of 92.85% and specificity of 81.25% in a set of 44 RNA extracts from patients analyzed in a hospital setting).
Hairstylists form an occupational group whose tasks involve repetitive and forced movements of hands and wrists, thus posing a risk of developing carpal tunnel syndrome (CTS). This study assessed the prevalence of and factors associated with CTS symptoms among hairstylists in Gaborone, Botswana.
A cross-sectional study was conducted using a self-administered questionnaire distributed among randomly selected hairstylists. The questionnaire gathered information on demographic characteristics, lifestyle, work-related characteristics and psychosocial factors. The
was used to determine the severity of CTS symptoms and its functional effects. Raf inhibitor Data were then analyzed using χ
and logistic regression models. The level of significance was determined at p < 0.05.
A total of 165 hairstylists took part in the study, with 92 (56%) of the respondents being females. The mean age (M±SD) of the respondents was 35.05±7.54 years with an age range of 22-63 years. Seventy-three (42.2%) hairstylists reported CTS symptsted amongst occupational health diseases in Botswana.
The results suggest a high prevalence of CTS among female hairstylists in Gaborone, and also point out that individual, work-related and psychosocial factors are associated with this syndrome. Future large-scale research is needed to establish the extent of CTS countrywide to influence policy-making. Currently, CTS is not listed amongst occupational health diseases in Botswana.
According to the Organization for Economic Cooperation and Development (OECD) data, 13% of deaths recorded in the European Union in 2010 were related to coronary heart disease. The Polish Central Statistical Office data show that cardiovascular mortality in 2014 was at the level of 100.1/100 000 general population. The aim of the study was to assess the current burden of deaths due to acute myocardial infarction (AMI) with the assessment of temporal and spatial variability in the Silesian Voivodeship, Poland.
Depersonalized data obtained from the Silesian Voivodeship Branch of the National Health Fund of Poland, based in Katowice, were used as the study material. The death rate due to acute or subsequent myocardial infarction in each of the subregions of the Silesian Voivodeship was standardized to the European Standard Population 2013. The analyses of the annual AMI death rate for 2009-2014 were performed and assigned to all the subregions of the Silesian Voivodeship, according to the patients' domicile.s or adverse health conditions.
The obtained results confirmed the spatial variability of mortality due to AMI in the study region. The worst situation was observed in the Sosnowiec subregion in which the number of specific deaths continuously increased, probably due to the limited availability of cardiological and invasive cardiology treatments or adverse health conditions.