Halseyneumann3851

Z Iurium Wiki

Verze z 13. 9. 2024, 13:29, kterou vytvořil Halseyneumann3851 (diskuse | příspěvky) (Založena nová stránka s textem „Furthermore, the results show that a power function can describe the relationship between effective dispersivities and transport distances. The exponent of…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Furthermore, the results show that a power function can describe the relationship between effective dispersivities and transport distances. The exponent of the function is greater than one for the heterogeneous media, but less than one for the individual facies. The results also indicate that the dispersion plume is macroscopically dominated by the distribution of facies. SCH900353 The heterogeneity of hydraulic conductivity causes the variations of flow velocity, which further enhances the scale dependence of dispersivities. link2 The tracer experiment in heterogeneous media provides the fundamental insight into the understanding of contaminant transport processes.This work presents a bibliographic review of the literature regarding the simultaneous removal of contaminants of emerging concern (CECs) and disinfection in domestic wastewater matrices. These two responses are usually evaluated independently, as most attention has been centered on the discussion over the removal of CECs in the last 10 years. However, the simultaneous removal of CECs and pathogens from wastewater has been recently brought to the spotlight, especially considering the removal of antibiotics and antibiotic-resistant bacteria. Aiming at a reproducible and nonbiased methodology, a combination of the construction of a bibliometric portfolio with systemic analysis was performed with peer-reviewed manuscripts published between 2008 and 2019 in five distinct databases. Several keyword combinations were necessary to achieve a relevant portfolio according to strict criteria. As a result, five highly cited papers and authors were selected. Among the advanced oxidation processes (AOPs) explored for simultaneous removal of CECs and disinfection in these papers, detailed results have been elucidated mainly for ozonation. Thus, revealing the broad range of questions that have yet to be investigated in depth for new technologies such as irradiated solar processes. In addition, there is a lack of information associated with simultaneous assessment of CEC removal and disinfection in real samples and in wastewater matrices originated from different secondary treatment technologies in diverse locations.Microplastics have caused considerable harm to the environment and threatened human health due to their strong adsorption and hard biodegradation. Therefore, the research of microplastic received increasing attention recently, producing numbers of related achievements. To comprehensively grasp the quantitative information of published papers on "microplastics," we analyzed the research progress and hotspots of "microplastics" through visualization software "VOSviewer." The results show that the number of literature on microplastics published from 2009 to 2019 increased exponentially (R2 = 0.9873). The top 10 cited references are mainly in "zooplankton ingesting microplastics," "microplastics in artificially cultivated bivalve," "microplastics in surface waters such as lakes," etc. The cutting-edge microplastics research is adsorption, biodegradation, ingestion and accumulation model, and toxicity analysis. In addition, the results predict that the combination of constructed wetland, biotechnology, and photocatalysis to remove microplastics will become new hotspots. The study provides researchers in microplastics with an overview of existing research and directional guidance for future research.Treated wastewater (TWW) irrigation has been recommended as an environmentally friendly agricultural practice and has been applied in many countries for decades. The effects of wastewater irrigation on rice yield and quality, as well as on the environment, with particular focus on greenhouse gas emissions from paddy fields with municipal wastewater irrigation, have gained substantial attention. In this study, bench-scale experiments were conducted in two cultivation seasons where seedlings of Bekoaoba, a large-grain high-yield rice variety, were transplanted and irrigated with TWW without fertilization. A control experiment was performed to simulate the cultivation conditions of normal paddy fields. The study aimed to quantify the effects of TWW irrigation on rice yield and quality, in addition to CH4 and N2O emissions. The highest rice yield (10.4 t ha-1) and protein content in brown rice (13.8%) was achieved when the soil was repeatedly subjected to bottom-to-top TWW irrigation without any synthetic fertilizer. Bottom-to-top TWW irrigation decreased CH4 emissions by up to 95.6% when compared with tap water irrigation, whereas bottom-to-top and top-to-top TWW irrigation increased N2O emissions by 5 and 15 times, respectively. Bottom-to-top irrigation of TWW could be considered a promising solution for reducing greenhouse gas emissions as TWW irrigation resulted in a lower combined global warming potential than tap water irrigation. Further, bottom-to-top irrigation of TWW produced less CH4 and N2O than top-to-top irrigation.In order to control the spread of COVID-19, China had implemented strict lockdown measures. The closure of cities had had a huge impact on human production and consumption activities, which had greatly reduced population mobility. This article used air pollutant data from 341 cities in mainland China and divided these cities into seven major regions based on geographic conditions and climatic environment. The impact of urban blockade on air quality during COVID-19 was studied from the perspectives of time, space, and season. In addition, this article used Normalized Difference Vegetation Index (NDVI) to systematically analyze the characteristics of air pollution in the country and used the Pearson correlation coefficient to explore the relationship between NDVI and the air pollutant concentrations during the COVID-19 period. Then, linear regression was used to find the quantitative relationship between NDVI and AQI, and the fitting effect of the model was found to be significant through t test. link3 Finally, some wer the local pollutant concentration will be. Therefore, the degree of vegetation coverage would have a direct or indirect impact on air pollution.A significant contributor to water pollution is increased nutrient concentration that results in eutrophication. Modeling approaches are crucial to understanding the dynamics of nutrients in river basins. This study integrates empirical models into Geographic Information Systems to quantify total nitrogen and phosphorus (TN and TP) load and concentration in watercourses of Brazil's Lobo Stream Hydrographic Basin (LSHB). Land use, topographic, demographic, and hydrological data were used to simulate the load and concentration of nutrients generated by point and nonpoint pollution sources. The results indicate that the simulated TN and TP load is primarily generated by nonpoint sources, 81% and 76%, respectively. The Itaqueri River subbasin is the most critical, yielding more than half of the basin's TN and TP load. About 90% of annual LSHB point pollution load is generated in the Itaqueri River subbasin, principally from the Água Branca Stream. The linear regression between simulated and observed concentration indicates significant relationships (TN, r2 = 0.73 (p less then 0.05), TP, r2 = 0.78 (p less then 0.05)). The method used was able to simulate TN and TP concentration in watercourses, but was inconsistent for point pollution, indicating it represents the dynamics of nutrients in rural basins more effectively than in urban ones. The study shows that its methodology, despite limitations, enables scientists and managers to understand and predict spatial distribution of nutrient concentration in LSHB watercourses.Bisphenol A (BPA) is an ubiquitous synthetic chemical exerting numerous adverse effects. Results of rodent studies show that BPA negatively affects adipose tissue. However, the short-term influence of this compound addressing adipocyte metabolism and adipokine secretion is unknown. In the present study, isolated rat adipocytes were exposed for 2 h to 1 and 10 nM BPA. Insulin-induced glucose conversion to lipids along with glucose transport was significantly increased in the presence of BPA. However, basal glucose conversion to lipids, glucose oxidation, and formation of lipids from acetate were unchanged in adipocytes incubated with BPA. It was also shown that BPA significantly increases lipolytic response of adipocytes to epinephrine. However, lipolysis stimulated by dibutyryl-cAMP (a direct activator of protein kinase A) and the antilipolytic action of insulin were not affected by BPA. Moreover, BPA did not influence leptin and adiponectin secretion from adipocytes. Our new results show that BPA is capable of disturbing processes related to lipid accumulation in isolated rat adipocytes. This is associated with the potentiation of insulin and epinephrine action. The effects of BPA appear already after short-term exposure to low doses of this compound. However, BPA fails to change adipokine secretion.Nitrite accumulation usually occurred when domesticating the idle aerobic activated sludge. A sequencing batch reactor (SBR) was used to investigate whether the short-cut nitrification sludge could be cultivated using the idle sludge as inoculated sludge. The results showed that the nitrification process consisted of three stages. In the first stage, the activity of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were very low with almost no nitrification performance. In the second stage, the activity of AOB started to recover with the effluent NH4+-N gradually decreased to 0.29 mg L-1, while NOB was alternately inhibited by free ammonia (FA), free nitrous acid (FNA), and nitrite. The effluent NOx--N was mainly NO2--N with an average nitrite accumulation ratio of 74.00%. In the third stage, the nitrification altered from short-cut nitrification to complete nitrification, and the nitrification kinetics of AOB and NOB were both well-fitted to the Monod equation (R2 > 0.92). The variations of effluent pH and ORP between cycles could indicate the recovery stage of the nitrifying ability. Through monitoring the curves of effluent pH and ORP, when the domestication process is between the pH peak and ORP plateau, the short-cut nitrification sludge could be cultivated. This study revealed the mechanism of nitrite accumulation during the domestication of long-term idle aerobic activated sludge, and established a control strategy to accelerate the domestication.Using two theoretical lenses-social identity theory (SIT) and organizational citizenship behavior towards environment (OCBE)-the current study examines the impact of employee CSR perceptions on environmental performance via mediation of employee pro-environmental behavior and organizational citizenship behavior towards environment (OCBE) utilizing data from three controversial industry sectors (i.e., hotel, tobacco, oil, and gas). We conducted a multi-time survey (sample n = 282) of employees working in organizations operating in controversial industry sectors to test a serial mediation model. The collected data were analyzed through partial least square structural equation modeling (PLS-SEM) technique using Smart PLS 3.3.2. The findings suggest that employee CSR perception significantly influences environmental performance. Furthermore, the mediating effects of employee pro-environmental behavior and OCBE were also found statistically significant. Using theories of SIT and OCBE, this study is an attempt to unveil what is unknown about CSR perception and environmental performance relationships.

Autoři článku: Halseyneumann3851 (Antonsen Brandt)