Gormsenmchugh1397
To assess response to programmed death-1 (PD-1) monotherapy (nivolumab) in hepatocellular carcinoma (HCC) patients using RECIST1.1, modified RECIST (mRECIST), and immune RECIST (iRECIST). A secondary objective was to identify clinicolaboratory and imaging variables predictive of progressive disease (PD) and overall survival (OS).
Patients with HCC treated with nivolumab at a single institution from 5/2016 to 12/2019 with MRI or CT performed ≥ 4weeks post treatment were retrospectively assessed. Patients who received concurrent locoregional, radiation, or other systemic therapies were excluded. Response was assessed by 2 observers in consensus using RECIST1.1, mRECIST, and iRECIST at 3/6/9/12-month time points. Time to progression (TTP) and OS were recorded. Clinicolaboratory and imaging variables were evaluated as predictors of PD and OS using uni-/multivariable and Cox regression analyses.
Fifty-eight patients (42M/16F) were included. 118 target lesions (TL) were identified before treatment. Baseline mean TL size was 49.1 ± 43.5mm (range 10-189mm) for RECIST1.1/iRECIST and 46.3 ± 42.3mm (range 10-189mm) for mRECIST. Objective response rate (ORR) was 21% for mRECIST/iRECIST/RECIST1.1, with no cases of pseudoprogression. Median OS and median TTP were 717days and 127days for RECIST1.1/mRECIST/iRECIST-iUPD (unconfirmed PD). Older age, MELD/Child-Pugh scores, AFP, prior transarterial radioembolization (TARE), and larger TL size were predictive of PD and/or poor OS using mRECIST/iRECIST. The strongest predictor of PD (HR = 2.49, 95% CI 1.29-4.81, p = 0.007) was TARE. The strongest predictor of poor OS was PD by mRECIST/iRECIST at 3 months (HR = 2.26, 95% CI 1.00-5.10, p = 0.05) with borderline significance.
Our results show ORR of 21%, equivalent for mRECIST, iRECIST, and RECIST1.1 in patients with advanced HCC clinically treated with nivolumab.
Our results show ORR of 21%, equivalent for mRECIST, iRECIST, and RECIST1.1 in patients with advanced HCC clinically treated with nivolumab.The traditional functions of cytoskeletal-associated proteins (CAPs) in line with polymerization and stabilization of the cytoskeleton have evolved and are currently underrated in oncology. Although therapeutic drugs have been developed to target the cytoskeletal components directly in cancer treatment, several recently established therapeutic agents designed for new targets block the proliferation of cancer cells and suppress resistance to existing target agents. It would seem like these targets only work toward inhibiting the polymerization of cytoskeletal components or hindering mitotic spindle formation in cancer cells, but a large body of literature points to CAPs and their culpability in cell signaling, molecular conformation, organelle trafficking, cellular metabolism, and genomic modifications. Here, we review those underappreciated functions of CAPs, and we delineate the implications of cellular signaling instigated by evasive properties induced by aberrant expression of CAPs in response to stress or failure to exert normal functions. We present an analogy establishing CAPs as vulnerable targets for cancer systems and credible oncotargets. This review establishes a paradigm in which the cancer machinery may commandeer the conventional functions of CAPs for survival, drug resistance, and energy generation; an interesting feature overdue for attention.Tuberculosis (TB) causes millions of deaths each year across the globe. Multiple drug-resistant (MDR) and extensively drug-resistant (XDR) mycobacterial strains have made the treatment extremely difficult. To overcome this hurdle, the development of new drug targets and an effective treatment strategy are desperately needed. This can be achieved by deciphering the role of essential genes and enzymes which are involved in cell survival. One such enzyme is glyoxalase II. The glyoxalase system (glyoxalase I and glyoxalase II) has a pivotal role in cellular survival and detoxification by converting methylglyoxal (MG) into lactate. Otherwise, the increased concentration of MG then modifies DNA, proteins, and lipids, resulting in abnormalities and cell death. Interestingly, the function and physiological role of glyoxalase II have remained undetermined in mycobacteria. In this study, the functional activity of MSMEG_2975 (putative glyoxalase II) after heterologous cloning and expression was determined. And the knockdown strain Mycobacterium smegmatis KD for MSMEG_2975 was constructed with tetracycline-inducible vector pMIND. The inducible knockdown of MSMEG_2975 affected bacterial growth, biofilm formation, transcriptome, and enhanced the susceptibility to antibiotics. This work represents mycobacterial glyoxalase II as a potential drug target against mycobacterial pathogens and indicates the crucial regulatory role of glyoxalase II in mycobacteria.The agriculture sector is the building block of an economy with more than 60% of the world population depending on it for livelihood. Among the many crops, rice is the most important income source. It is the staple food for more than half of the world population. In spite of its huge demand, rice production has been dwindling due to various constraints. Chitosan nanoparticles (ChNP) are an excellent choice for agricultural applications owing to its non-toxic, biodegradable nature. Chitosan is an interesting polymer and is then partially or fully deacetylated chitin. In the present study, the effectiveness of ChNP as a growth promoter in improving the yield and biological activity of rice has been analyzed. 1 mg/ml of ChNP was applied as a seed, soil, foliar and combination treatments and the growth and yield parameters were measured to understand the best mode of application. The combination treatment of seed, soil and the foliar application was found to be most efficient. The cellular uptake of ChNP was also studied to deduce the mechanism of action. The soil toxicity of ChNP was studied prior to application and was found to be non-toxic.As a medicinal and edible homologous fungi, Morchella is rich in multiple metabolites. The metabolite is a kind of essential substance with active components. In this study, Morchella fruit bodies and mycelium were selected to identify their metabolite components. The primary metabolites of the two experimental groups were analyzed using a method of widely targeted metabolome based on UPLC-ESI-MS/MS. A total of 354 different metabolites were characterized, including 188 upregulated ones and 166 downregulated ones in the fruit bodies. Further, the main 20 metabolic pathways of the metabolites were analyzed. The first 9 ones are tyrosine metabolites, thyroid hormone biosynthetic pathway, phenylalanine metabolites, linoleic metabolites synthetic pathway, glycerophosphate metabolic pathway, choline in tumors, methyl butyl metabolites, arginine synthetic pathway, arginine and proline metabolites. This study provides theoretical basis for the analysis of metabolic pathway of Morchella fruit bodies and mycelium that serve for further research of their medicinal mechanism and effective components.Murraya paniculata (L.) Jack is commonly cultivated as ornamental plant in Assam and has been used as spice and phytomedicine traditionally for many healthcare purposes. The therapeutic potential and chemical constituents of the essential oil of M. paniculata leaf was investigated against several pathogenic microbial species and human cancer cell lines. 29 chemical compounds were identified by GC-MS analysis from the essential oil representing 97.62% of the oil. The major compound identified was caryophyllene (20.93%). Leaf essential oil exhibited promising antibacterial activity against Mycobacterium smegmatis (MIC = 4 µg/mL) and Pseudomonas aeruginosa (MIC = 4 µg/mL). Best anticancer activity of the oil was observed for HeLa cells (IC50 = 6.28 μg/mL). Further, scanning electron microscopic studies revealed that the oil kills micro-organisms with the deformation of cellular morphology on treatment of the oil. Thus, the essential oil of M. paniculata leaf can be an excellent alternative for development of new antimicrobials and anticancer chemotherapeutic agents for the pharmaceutical industries.New Zealand's most active volcano, Whakaari White Island was a common tourist attraction prior to its eruption on 9 th December 2019. At the time of the eruption, there were 47 people on the island from three tour groups. 39 people survived the initial eruption and were extracted. selleck products 31 entered into the New Zealand National Burn Service across four hospitals. The median age of the patients treated at the National Burn Centre was 45.5 years (range 14 - 67 years) and median total body surface area burn was 49.5% (range 9% - 90%). The three month survival of this eruptive event was 55%, which subsequently fell to an overall rate of 53% following one late death of an early survivor after repatriation home. Of the patients who survived the initial eruption for long enough to be admitted to the National Burn Service, the overall survival rate was 71% at three months. We describe 12 lessons we have learnt from our management of the survivors. The key surgical lessons among these are The injuring mechanism combined ballistic trauma, thermal and acidic burn components, with the acid component being the most problematic and urgent for management. Volcanic ash burns result in on-going burn depth progression, deep underlying tissue damage and significant metabolic instability. Early skin grafting was not successful in many cases. Reconstructive strategy needed adjusting to cope with the high operative demand and limited donor sites in all patients. Protect yourself from potential dangers with additional personal protective equipment (PPE) in an unfamiliar setting.
Diffuse midline gliomas (DMG) H3K27M-mutant, including diffuse intrinsic pontine glioma (DIPG), are pediatric brain tumors associated with grim prognosis. Although GD2-CAR T-cells demonstrated significant anti-tumor activity against DMG H3K27M-mutant in vivo, a multimodal approach may be needed to more effectively treat patients. We investigated GD2 expression in DMG/DIPG and other pediatric high-grade gliomas (pHGG) and sought to identify chemical compounds that would enhance GD2-CAR T-cell anti-tumor efficacy.
Immunohistochemistry in tumor tissue samples and immunofluorescence in primary patient-derived cell lines were performed to study GD2 expression. We developed a high-throughput cell-based assay to screen 42 kinase inhibitors in combination with GD2-CAR T-cells. Cell viability, western blots, flow-cytometry, real time PCR experiments, DIPG 3D culture models and orthotopic xenograft model were applied to investigate the effect of selected compounds on DIPG cell death and CAR T-cell function.
GD2 was heterogeneously, but widely, expressed in the tissue tested, while its expression was homogeneous and restricted to DMG/DIPG H3K27M-mutant cell lines. We identified dual IGF1R/IR antagonists, BMS-754807 and linsitinib, able to inhibit tumor cell viability at concentrations that do not affect CAR T-cells. Linsitinib, but not BMS-754807, decreases activation/exhaustion of GD2-CAR T-cells and increases their central memory profile. The enhanced anti-tumor activity of linsitinib/GD2-CAR T-cell combination was confirmed in DIPG models in vitro, ex vivo and in vivo.
Our study supports the development of IGF1R/IR inhibitors to be used in combination with GD2-CAR T-cells for treating patients affected by DMG/DIPG and, potentially, by pHGG.
Our study supports the development of IGF1R/IR inhibitors to be used in combination with GD2-CAR T-cells for treating patients affected by DMG/DIPG and, potentially, by pHGG.