Stentoftjochumsen0967

Z Iurium Wiki

Verze z 12. 9. 2024, 16:27, kterou vytvořil Stentoftjochumsen0967 (diskuse | příspěvky) (Založena nová stránka s textem „In this communication, by means of first principles calculations, we searched stable two-dimensional borides with octacoordinated main group elements, and…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

In this communication, by means of first principles calculations, we searched stable two-dimensional borides with octacoordinated main group elements, and we found that only AlB4 monolayer is stable in the planar octacoordinate motif through our stability screenings, which can be used for electrocatalyzing the hydrogen evolution reaction.The recent observation of ferroelectricity in ultra thin films of hafnium oxide (HfO2) has been attributed to the orthorhombic (o) phase of HfO2 with space group Pca21. Although this oxide is polymorphic in nature, this polar o-phase is known to be stabilized in the doped thin film oxide. The objective of the present experiment is to stabilize the o-phases in La doped bulk polycrystalline HfO2 and investigate their evolution with the doping concentration through Time Differential Perturbed Angular Correlation (TDPAC), X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) measurements. The present work reports the presence of both the polar Pca21 phase and the antipolar Pbca phase at different La-concentrations. Two o-phases of HfO2 with space groups Pca21 and Pbca, difficult to distinguish by other complimentary methods, could be unambiguously identified by utilizing the atomic scale sensitivity of the electric field gradient (EFG) embedded in TDPAC spectroscopy. The determination of the oxidation state and the local environment of La-atoms by XANES and EXAFS measurements illuminates the microscopic role of the dopant in stabilizing the o-phase. The "solute drag model" proposes a critical crystallite size for the nucleation of the o-phase in bulk HfO2 and explains the role of the La-dopant in stabilizing the o-phase. Thus the present study shows the possibility of stabilizing the polar o-phase and hence attaining ferroelectricity in bulk HfO2 to augment the scope of future application for this ferroelectric device.Transgenic mouse models have proved to be powerful tools in studying various aspects of human neurological disorders, including epilepsy. The SCN1A-associated genetic epilepsies comprise a wide spectrum of seizure disorders with incomplete penetrance and clinical variability. SCN1A mutations can result in a large variety of seizure phenotype ranging from simple, self-limited fever-associated febrile seizures (FS), moderate-level genetic epilepsy with febrile seizures plus (GEFS+) to more severe Dravet Syndrome (DS). Although FS are commonly seen in children below 6-7 years of age who do not have genetic epilepsy, FS in GEFS+ patients continue to occur into adulthood. Traditionally, experimental FS have been induced in mice by exposing the animal to a stream of dry air or heating lamps, and the rate of change in body temperature is often not well controlled. Here, we describe a custom-built heating chamber, with a plexiglass front, that is fitted with a digital temperature controller and a heater-equipped electric fan, which can send heated forced air into the test arena in a temperature-controlled manner. The body temperature of a mouse placed in the chamber, monitored through a rectal probe, can be increased to 40-42 °C in a reproducible manner by increasing the temperature inside the chamber. Continual visual monitoring of the animals during the heating period demonstrates induction of heat-induced seizures in mice carrying an FS mutation at a body temperature that does not elicit behavioral seizures in wild-type litter mates. Animals can be easily removed from the chamber and placed on a cooling pad to rapidly return body temperature to normal. This method provides for a simple, rapid, and reproducible screening protocol for the occurrence of heat-induced seizures in epilepsy mouse models.Intestinal regional specification describes a process through which unique morphology and function are imparted to defined areas of the developing gastrointestinal (GI) tract. Regional specification in the intestine is driven by multiple developmental pathways, including the bone morphogenetic protein (BMP) pathway. Based on normal regional specification, a method to generate human colonic organoids (HCOs) from human pluripotent stem cells (hPSCs), which include human embryonic stem cells (hES) and induced pluripotent stem cells (iPSCs), was developed. A three-day induction of BMP signaling sufficiently patterns mid/hindgut tube cultures into special AT-rich sequence-binding protein 2 (SATB2)-expressing HCOs containing all of the main epithelial cell types present in human colon as well as co-developing mesenchymal cells. Omission of BMP (or addition of the BMP inhibitor NOGGIN) during this critical patterning period resulted in the formation of human intestinal organoids (HIOs). HIOs and HCOs morphologically and molecularly resemble human developing small intestine and colon, respectively. Despite the utility of HIOs and HCOs for studying human intestinal development, the generation of HIOs and HCOs is challenging. JAK inhibitor This paper presents methods for generating, maintaining, and characterizing HIOs and HCOs. In addition, the critical steps in the protocol and troubleshooting recommendations are provided.Cognitive deficits, including impaired learning and memory, are a primary symptom of various developmental and age-related neurodegenerative diseases and traumatic brain injury (TBI). Zebrafish are an important neuroscience model due to their transparency during development and robust regenerative capabilities following neurotrauma. While various cognitive tests exist in zebrafish, most of the cognitive assessments that are rapid examine non-associative learning. At the same time, associative-learning assays often require multiple days or weeks. Here, we describe a rapid associative-learning test that utilizes an adverse stimulus (electric shock) and requires minimal preparation time. The shuttle box assay, presented here, is simple, ideal for novice investigators, and requires minimal equipment. We demonstrate that, following TBI, this shuttle box test reproducibly assesses cognitive deficit and recovery from young to old zebrafish. Additionally, the assay is adaptable to examine either immediate or delayed memory. We demonstrate that both a single TBI and repeated TBI events negatively affect learning and immediate memory but not delayed memory. We, therefore, conclude that the shuttle box assay reproducibly tracks the progression and recovery of cognitive impairment.The ribosome is a large ribonucleoprotein complex that assembles proteins processively along mRNA templates. The diameter of the ribosome is approximately 20 nm to accommodate large tRNA substrates at the A-, P- and E-sites. Consequently, the ribosome dynamics are naturally de-phased quickly. Single molecule method can detect each ribosome separately and distinguish inhomogeneous populations, which is essential to reveal the complicated mechanisms of multi-component systems. We report the details of a smFRET method based on the Nikon Ti2 inverted microscope to probe the ribosome dynamics between the ribosomal protein L27 and tRNAs. The L27 is labeled at its unique Cys 53 position and reconstituted into a ribosome that is engineered to lack L27. The tRNA is labeled at its elbow region. As the tRNA moves to different locations inside the ribosome during the elongation cycle, such as pre- and post- translocation, the FRET efficiencies and dynamics exhibit differences, which have suggested multiple subpopulations. These subpopulations are not detectable by ensemble methods. The TIRF-based smFRET microscope is built on a manual or motorized inverted microscope, with home-built laser illumination. The ribosome samples are purified by ultracentrifugation, loaded into a home-built multi-channel sample cell and then illuminated via an evanescent laser field. The reflection laser spot can be used to achieve feedback control of perfect focus. The fluorescence signals are separated by a motorized filter-turret and collected by two digital CMOS cameras. The intensities are retrieved via the NIS-Elements software.Disruption of nucleocytoplasmic transport is increasingly implicated in the pathogenesis of neurodegenerative diseases. Moreover, there is a growing recognition of cell-specific differences in nuclear pore complex structure, prompting a need to adapt nuclear transport methods for use in neurons. Permeabilized cell assays, in which the plasma membrane is selectively perforated by digitonin, are widely used to study passive and active nuclear transport in immortalized cell lines but have not been applied to neuronal cultures. In our initial attempts, we observed the rapid loss of nuclear membrane integrity in primary mouse cortical neurons exposed to even low concentrations of digitonin. We hypothesized that neuronal nuclear membranes may be uniquely vulnerable to the loss of cytoplasmic support. After testing multiple approaches to improve nuclear stability, we observed optimal nuclear integrity following hypotonic lysis in the presence of a concentrated bovine serum albumin cushion. Neuronal nuclei prepared by this approach reliably import recombinant fluorescent cargo in an energy-dependent manner, facilitating analysis of nuclear import by high content microscopy with automated analysis. We anticipate that this method will be broadly applicable to studies of passive and active nuclear transport in primary neurons.Breast cancer is the leading cause of mortality in women. The growth of breast cancer cells and their subsequent metastasis is a key factor for its progression. Although the mechanisms involved in promoting breast cancer growth have been intensively studied using monocultures of breast cancer cells such as MCF-7 cells, the contribution of other cell types, such as vascular and lymphatic endothelial cells that are intimately involved in tumor growth, has not been investigated in depth. Cell-cell interaction plays a key role in tumor growth and progression. Neoangiogenesis, or the development of vessels, is essential for tumor growth, whereas the lymphatic system serves as a portal for cancer cell migration and subsequent metastasis. Recent studies provide evidence that vascular and lymphatic endothelial cells can significantly influence cancer cell growth. These observations imply a need for developing in vitro models that would more realistically reflect breast cancer growth processes in vivo. Moreover, restrs in-depth instructions for preparing multi-cell spheroids for breast cancer research.Measuring the localization of microbes within their in vivo context is an essential step in revealing the functional relationships between the microbiota and the vertebrate gut. The spatial landscape of the gut microbiota is tightly controlled by physical features - intestinal mucus, crypts, and folds - and is affected by host-controlled properties such as pH, oxygen availability, and immune factors. These properties limit the ability of commensal microbes and pathogens alike to colonize the gut stably. At the micron-scale, microbial organization determines the close-range interactions between different microbes as well as the interactions between microbes and their host. These interactions then affect large-scale organ function and host health. This protocol enables the visualization of the gut microbiota spatial organization from distances between cells to organ-wide scales. The method is based on fixing gut tissues while preserving intestinal structure and mucus properties. The fixed samples are then embedded, sectioned, and stained to highlight specific bacterial species through fluorescence in situ hybridization (FISH).

Autoři článku: Stentoftjochumsen0967 (Sanchez Harbo)