Hougaardkehoe4083
We concluded that all the benzoates in our study can be activated by mycobacterial enzymes and that the phenyl and hexyl esters presented higher activity than the corresponding free acids, with the nitrobenzoates, and especially the dinitrobenzoates, showing very interesting antitubercular activity that deserve further exploration. Our results did not show a correlation between the activity and the pKa of the acids.Systemic and pulmonary hypertension are multifactorial, high-pressure diseases. The first one is a civilizational condition, and the second one is characterized by a very high mortality rate. Searching for new therapeutic strategies is still an important task. (Endo)cannabinoids, known for their strong vasodilatory properties, have been proposed as possible drugs for different types of hypertension. Unfortunately, our review, in which we summarized all publications found in the PubMed database regarding chronic administration of (endo)cannabinoids in experimental models of systemic and pulmonary hypertension, does not confirm any encouraging suggestions, being based mainly on in vitro and acute in vivo experiments. We considered vasodilator or blood pressure (BP) responses and cardioprotective, anti-oxidative, and the anti-inflammatory effects of particular compounds and their influence on the endocannabinoid system. We found that multitarget (endo)cannabinoids failed to modify higher BP in systemic hypertension since they induced responses leading to decreased and increased BP. In contrast, multitarget cannabidiol and monotarget ligands effectively treated pulmonary and systemic hypertension, respectively. To summarize, based on the available literature, only (endo)cannabinoids with a defined site of action are recommended as potential antihypertensive compounds in systemic hypertension, whereas both mono- and multitarget compounds may be effective in pulmonary hypertension.Natural products are increasingly in demand in dermatology and cosmetology. In the present study, highly valuable supercritical CO2 (sCO2) extracts rich in bioactive compounds with antiradical and antibacterial activity were obtained from the inflorescences of industrial hemp. Volatile compounds were analyzed by gas chromatography in tandem with mass spectrometry (GC-MS), while cannabinoids were determined by high performance liquid chromatography (HPLC-DAD). Extraction yields varied from 0.75 to 8.83%, depending on the pressure and temperature applied. The extract obtained at 320 bar and 40 °C with the highest content (305.8 µg mg-1) of cannabidiolic acid (CBDA) showed the best antiradical properties. All tested extract concentrations from 10.42 µg mL-1 to 66.03 µg mL-1 possessed inhibitory activities against E. coli, P. aeruginosa, B. subtilis, and S. aureus. The sCO2 extract with the highest content of cannabidiol (CBD) and rich in α-pinene, β-pinene, β-myrcene, and limonene was the most effective. The optimal conditions for sCO2 extraction of cannabinoids and volatile terpenes from industrial hemp were determined. The temperature of 60 °C proved to be optimal for all responses studied, while the pressure showed a different effect depending on the compounds targeted. A low pressure of 131.2 bar was optimal for the extraction of monoterpenes, while extracts rich in sesquiterpenes were obtained at 319.7 bar. A high pressure of 284.78 bar was optimal for the extraction of CBD.The emergence of virulent extended spectrum β-lactamase producing Klebsiella pneumoniae (ESBL-KP) including carbapenem-resistant Klebsiella pneumoniae (CRKP) in hospital-acquired infections has resulted in significant morbidity and mortality worldwide. We investigated the antibiotic resistance and virulence factors associated with ESBL-KP and CRKP in tertiary care hospitals in Bangladesh and explored their ability to form biofilm. A total of 67 ESBL-KP were isolated from 285 Klebsiella pneumoniae isolates from environmental and patient samples from January 2019 to April 2019. For ESBL-KP isolates, molecular typing was carried out using enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR), antibiotic susceptibility testing, PCR for virulence and drug-resistant genes, and biofilm assays were also performed. All 67 isolates were multidrug-resistant (MDR) to different antibiotics at high levels and 42 isolates were also carbapenem-resistant. The most common β-lactam resistance gene was blaCTX-M-1 (91%), followed by blaTEM (76.1%), blaSHV (68.7%), blaOXA-1 (29.9%), blaGES (14.9%), blaCTX-M-9 (11.9%), and blaCTX-M-2 (4.5%). The carbapenemase genes blaKPC (55.2%), blaIMP (28.4%), blaVIM (14.9%), blaNDM-1 (13.4%), and blaOXA-48 (10.4%) and virulence-associated genes such as fimH (71.6%), ugeF (58.2%), wabG (56.7%), ureA (47.8%) and kfuBC (28.4%) were also detected. About 96.2% of the environmental and 100% of the patient isolates were able to form biofilms. ERIC-PCR-based genotyping and hierarchical clustering of K. pneumoniae isolates revealed an association between environmental and patient samples, indicating clonal association with possible transmission of antimicrobial resistance genes. Our findings can help in improving patient care and infection control, and the development of public health policies related to hospital-acquired infections.Hearing loss negatively impacts the well-being of millions of people worldwide. Systemic delivery of ototherapeutics has limited efficacy due to severe systemic side effects and the presence of the blood-labyrinth barrier that selectively limits or enables transfer of molecules between plasma and inner ear tissues and fluids. Local drug delivery into the middle and inner ear would be preferable for many newly emerging classes of drugs. Although the cochlea is a challenging target for drug delivery, recent technologies could provide a safe and efficacious delivery of ototherapeutics. Local drug delivery routes include topical delivery via the external auditory meatus, retroauricular, transtympanic, and intracochlear delivery. Many new drug delivery systems specifically for the inner ear are under development or undergoing clinical studies. Future studies into these systems may provide a means for extended delivery of drugs to preserve or restore hearing in patients with hearing disorders. This review outlines the anatomy of the (inner) ear, describes the various local delivery systems and routes, and various quantification methodologies to determine the pharmacokinetics of the drugs in the inner ear.Otic disorders, such as otitis media and hearing loss, affect a substantial portion of the global population. Despite this, oto-therapeutics, in particular those intended to treat hearing loss, have seen limited development and innovation. A significant factor to this is likely a result of the inherent costs and complexities of drug discovery and development. With in vitro 3D tissue models seeing increased utility for the rapid, high-throughput screening of drug candidates, it stands to reason that the field of otology could greatly benefit from such innovations. In this study, we propose and describe an in vitro 3D model, designed using a physiologically based approach, which we suggest can be used to estimate drug permeability across human tympanic membranes (TM). We characterize the permeability properties of several template drugs in this model under various growth and storage conditions. The availability of such cost-effective, rapid, high-throughput screening tools should allow for increased innovation and the discovery of novel drug candidates over the currently used animal models. In the context of this TM permeation model, it may promote the development of topical drugs and formulations that can non-invasively traverse the TM and provide tissue-targeted drug delivery as an alternative to systemic treatment, an objective which has seen limited study until present.Disturbance of glucose metabolism, nerve growth factor (NGF) and m-TOR signaling have been associated with the pathophysiology of epilepsy. Pioglitazone (PGZ) is an anti-diabetic drug that shows a protective effect in neurodegenerative diseases including epilepsy; however, its exact mechanism is not fully elucidated. The present study aimed to investigate the potential neuroprotective effect of PGZ in pentylenetetrazole (PTZ) kindled seizure in mice. Swiss male albino mice were randomly distributed into four groups, each having six mice. Group 1 was considered the control. Epilepsy was induced by PTZ (35 mg/kg i.p.) thrice a week for a total of 15 injections in all other groups. Group 2 was considered the untreated PTZ group while Group 3 and Group 4 were treated by PGZ prior to PTZ injection at two dose levels (5 and 10 mg/kg p.o., respectively). Seizure activity was evaluated after each PTZ injection according to the Fischer and Kittner scoring system. At the end of the experiment, animals were sacrificed under deep anesthesia and the hippocampus was isolated for analysis of glucose transporters by RT-PCR, nerve growth factor (NGF) by ELISA and mTOR by western blotting, in addition to histopathological investigation. The PTZ-treated group showed a significant rise in seizure score, NGF and m-TOR hyperactivation, along with histological abnormalities compared to the control group. Treatment with PGZ demonstrated a significant decrease in NGF, seizure score, m-TOR, GLUT-1 and GLUT-3 in comparison to the PTZ group. In addition, improvement of histological features was observed in both PGZ treated groups. These findings suggest that PGZ provides its neuroprotective effect through modulating m-TOR signaling, glucose metabolism and NGF levels.The position of conceptual density functional theory (CDFT) in the history of density functional theory (DFT) is sketched followed by a chronological report on the introduction of the various DFT descriptors such as the electronegativity, hardness, softness, Fukui function, local version of softness and hardness, dual descriptor, linear response function, and softness kernel. Divarasib Through a perturbational approach they can all be characterized as response functions, reflecting the intrinsic reactivity of an atom or molecule upon perturbation by a different system, including recent extensions by external fields. Derived descriptors such as the electrophilicity or generalized philicity, derived from the nature of the energy vs. N behavior, complete this picture. These descriptors can be used as such or in the context of principles such as Sanderson's electronegativity equalization principle, Pearson's hard and soft acids and bases principle, the maximum hardness, and more recently, the minimum electrophilicity principle. CDFT has known an ever-growing use in various subdisciplines of chemistry from organic to inorganic chemistry, from polymer to materials chemistry, and from catalysis to nanotechnology. The increasing size of the systems under study has been coped with thanks to methodological evolutions but also through the impressive evolution in software and hardware. In this flow, biosystems entered the application portfolio in the past twenty years with studies varying (among others) from enzymatic catalysis to biological activity and/or the toxicity of organic molecules and to computational peptidology. On the basis of this evolution, one can expect that "the best is yet to come".