Duganalexandersen9003

Z Iurium Wiki

Verze z 12. 9. 2024, 14:22, kterou vytvořil Duganalexandersen9003 (diskuse | příspěvky) (Založena nová stránka s textem „Quantum history states were recently formulated by extending the consistent histories approach of Griffiths to the entangled superposition of evolution pat…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Quantum history states were recently formulated by extending the consistent histories approach of Griffiths to the entangled superposition of evolution paths and were then experimented with Greenberger-Horne-Zeilinger states. Tensor product structure of history-dependent correlations was also recently exploited as a quantum computing resource in simple linear optical setups performing multiplane diffraction (MPD) of fermionic and bosonic particles with remarkable promises. This significantly motivates the definition of quantum histories of MPD as entanglement resources with the inherent capability of generating an exponentially increasing number of Feynman paths through diffraction planes in a scalable manner and experimental low complexity combining the utilization of coherent light sources and photon-counting detection. In this article, quantum temporal correlation and interference among MPD paths are denoted with quantum path entanglement (QPE) and interference (QPI), respectively, as novel quantum resources. Operator theory modeling of QPE and counterintuitive properties of QPI are presented by combining history-based formulations with Feynman's path integral approach. Leggett-Garg inequality as temporal analog of Bell's inequality is violated for MPD with all signaling constraints in the ambiguous form recently formulated by Emary. The proposed theory for MPD-based histories is highly promising for exploiting QPE and QPI as important resources for quantum computation and communications in future architectures.In this contribution, we provide a detailed analysis of the search operation for the Interval Merging Binary Tree (IMBT), an efficient data structure proposed earlier to handle typical anomalies in the transmission of data packets. A framework is provided to decide under which conditions IMBT outperforms other data structures typically used in the field, as a function of the statistical characteristics of the commonly occurring anomalies in the arrival of data packets. We use in the modeling Bernstein theorem, Markov property, Fibonacci sequences, bipartite multi-graphs, and contingency tables.The entropy of conduction electrons was evaluated utilizing the thermodynamic definition of the Seebeck coefficient as a tool. This analysis was applied to two different kinds of scientific questions that can-if at all-be only partially addressed by other methods. These are the field-dependence of meta-magnetic phase transitions and the electronic structure in strongly disordered materials, such as alloys. We showed that the electronic entropy change in meta-magnetic transitions is not constant with the applied magnetic field, as is usually assumed. Furthermore, we traced the evolution of the electronic entropy with respect to the chemical composition of an alloy series. Insights about the strength and kind of interactions appearing in the exemplary materials can be identified in the experiments.This paper presents a novel five-dimensional three-leaf chaotic attractor and its application in image encryption. First, a new five-dimensional three-leaf chaotic system is proposed. Some basic dynamics of the chaotic system were analyzed theoretically and numerically, such as the equilibrium point, dissipative, bifurcation diagram, plane phase diagram, and three-dimensional phase diagram. Simultaneously, an analog circuit was designed to implement the chaotic attractor. The circuit simulation experiment results were consistent with the numerical simulation experiment results. Second, a convolution kernel was used to process the five chaotic sequences, respectively, and the plaintext image matrix was divided according to the row and column proportions. Lastly, each of the divided plaintext images was scrambled with five chaotic sequences that were convolved to obtain the final encrypted image. selleck screening library The theoretical analysis and simulation results demonstrated that the key space of the algorithm was larger than 10150 that had strong key sensitivity. It effectively resisted the attacks of statistical analysis and gray value analysis, and had a good encryption effect on the encryption of digital images.Identifying a set of influential nodes is an important topic in complex networks which plays a crucial role in many applications, such as market advertising, rumor controlling, and predicting valuable scientific publications. In regard to this, researchers have developed algorithms from simple degree methods to all kinds of sophisticated approaches. However, a more robust and practical algorithm is required for the task. In this paper, we propose the EnRenew algorithm aimed to identify a set of influential nodes via information entropy. Firstly, the information entropy of each node is calculated as initial spreading ability. Then, select the node with the largest information entropy and renovate its l-length reachable nodes' spreading ability by an attenuation factor, repeat this process until specific number of influential nodes are selected. Compared with the best state-of-the-art benchmark methods, the performance of proposed algorithm improved by 21.1%, 7.0%, 30.0%, 5.0%, 2.5%, and 9.0% in final affected scale on CEnew, Email, Hamster, Router, Condmat, and Amazon network, respectively, under the Susceptible-Infected-Recovered (SIR) simulation model. The proposed algorithm measures the importance of nodes based on information entropy and selects a group of important nodes through dynamic update strategy. The impressive results on the SIR simulation model shed light on new method of node mining in complex networks for information spreading and epidemic prevention.Surges in sympathetic activity should be a major contributor to the frequent occurrence of cardiovascular events towards the end of nocturnal sleep. We aimed to investigate whether the analysis of hypnopompic heart rate variability (HRV) could assist in the prediction of cardiovascular disease (CVD). 2217 baseline CVD-free subjects were identified and divided into CVD group and non-CVD group, according to the presence of CVD during a follow-up visit. HRV measures derived from time domain analysis, frequency domain analysis and nonlinear analysis were employed to characterize cardiac functioning. Machine learning models for both long-term and short-term CVD prediction were then constructed, based on hypnopompic HRV metrics and other typical CVD risk factors. CVD was associated with significant alterations in hypnopompic HRV. An accuracy of 81.4% was achieved in short-term prediction of CVD, demonstrating a 10.7% increase compared with long-term prediction. There was a decline of more than 6% in the predictive performance of short-term CVD outcomes without HRV metrics.

Autoři článku: Duganalexandersen9003 (Bowman Mathews)