Pickettreece0690

Z Iurium Wiki

Verze z 10. 9. 2024, 22:35, kterou vytvořil Pickettreece0690 (diskuse | příspěvky) (Založena nová stránka s textem „The echocardiographic characterization of cardiac morphology, function, and coronary flow in neonatal mice is also described.Inflammatory caspases include…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The echocardiographic characterization of cardiac morphology, function, and coronary flow in neonatal mice is also described.Inflammatory caspases include caspase-1, -4, -5, -11, and -12 and belong to the subgroup of initiator caspases. Caspase-1 is required to ensure correct regulation of inflammatory signaling and is activated by proximity-induced dimerization following recruitment to inflammasomes. Caspase-1 is abundant in the monocytic cell lineage and induces maturation of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 to active secreted molecules. The other inflammatory caspases, caspase-4 and -5 (and their murine homolog caspase-11) promote IL-1β release by inducing pyroptosis. Caspase Bimolecular Fluorescence Complementation (BiFC) is a tool used to measure inflammatory caspase induced proximity as a readout of caspase activation. The caspase-1, -4, or -5 prodomain, which contains the region that binds to the inflammasome, is fused to non-fluorescent fragments of the yellow fluorescent protein Venus (Venus-N [VN] or Venus-C [VC]) that associate to reform the fluorescent Venus complex when the caspases undergo induced proximity. This protocol describes how to introduce these reporters into primary human monocyte-derived macrophages (MDM) using nucleofection, treat the cells to induce inflammatory caspase activation, and measure caspase activation using fluorescence and confocal microscopy. The advantage of this approach is that it can be used to identify the components, requirements, and localization of the inflammatory caspase activation complex in living cells. However, careful controls need to be considered to avoid compromising cell viability and behavior. This technique is a powerful tool for the analysis of dynamic caspase interactions at the inflammasome level as well as for the interrogation of the inflammatory signaling cascades in living MDM and monocytes derived from human blood samples.Intravital imaging of leukocyte-endothelial interactions offers valuable insights into immune-mediated disease in live animals. The study of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) and other respiratory pathologies in vivo is difficult due to the limited accessibility and inherent motion artifacts of the lungs. Nonetheless, various approaches have been developed to overcome these challenges. selleckchem This protocol describes a method for intravital fluorescence microscopy to study real-time leukocyte-endothelial interactions in the pulmonary microcirculation in an experimental model of ALI. An in vivo lung imaging system and 3-D printed intravital microscopy platform are used to secure the anesthetized mouse and stabilize the lung while minimizing confounding lung injury. Following preparation, widefield fluorescence microscopy is used to study leukocyte adhesion, leukocyte rolling, and capillary function. While the protocol presented here focuses on imaging in an acute model of inflammatory lung disease, it may also be adapted to study other pathological and physiological processes in the lung.In this manuscript, three different step-by-step protocols to generate highly monodisperse emulsion drops using glass-based microfluidics are described. The first device is built for the generation of simple drops driven by gravity. The second device is designed to generate emulsion drops in a coflowing scheme. The third device is an extension of the coflowing device with the addition of a third liquid that acts as an electric ground, allowing the formation of electrified drops that subsequently discharge. In this setup, two of the three liquids have an appreciable electrical conductivity. The third liquid mediates between these two and is a dielectric. A voltage difference applied between the two conducting liquids creates an electric field that couples with hydrodynamic stresses of the coflowing liquids, affecting the jet and drop formation process. The addition of the electric field provides a path to generate smaller drops than in simple coflow devices and for generating particles and fibers with a wide range of sizes.Copper(II) is an essential metal in biological systems, conferring unique chemical properties to the biomolecules with which it interacts. It has been reported to directly bind to a variety of peptides and play both necessary and pathological roles ranging from mediating structure to electron transfer properties to imparting catalytic function. Quantifying the binding affinity and thermodynamics of these Cu(II)-peptide complexes in vitro provides insight into the thermodynamic driving force of binding, potential competitions between different metal ions for the peptide or between different peptides for Cu(II), and the prevalence of the Cu(II)-peptide complex in vivo. However, quantifying the binding thermodynamics can be challenging due to a myriad of factors, including accounting for all competing equilibria within a titration experiment, especially in cases where there are a lack of discrete spectroscopic handles representing the peptide, the d-block metal ion, and their interactions. Here, a robust set of experiments is provided for the accurate quantification of Cu(II)-peptide thermodynamics. This article focuses on the use of electronic absorption spectroscopy in the presence and absence of chromophoric ligands to provide the needed spectroscopic handle on Cu(II) and the use of label-free isothermal titration calorimetry. In both experimental techniques, a process is described to account for all competing equilibria. While the focus of this article is on Cu(II), the described set of experiments can apply beyond Cu(II)-peptide interactions, and provide a framework for accurate quantification of other metal-peptide systems under physiologically relevant conditions.The pupae of Drosophila melanogaster are immobile for several days during metamorphosis, during which they develop a new body with a thin transparent adult integument. Their immobility and transparency make them ideal for in vivo live imaging experiments. Many studies have focused on the dorsal epithelial monolayer of the pupal notum because of its accessibility and relatively large size. In addition to the studies of epithelial mechanics and development, the notum has been an ideal tissue to study wound healing. After an injury, the entire epithelial repair process can be captured by live imaging over 6-12 h. Despite the popularity of the notum for live imaging, very few published studies have utilized fixed notum samples. Fixation and staining are common approaches for nearly all other Drosophila tissues, taking advantage of the large repertoire of simple cellular stains and antibodies. However, the pupal notum is fragile and prone to curling and distortion after removal from the body, making it challenging to complement live imaging. This protocol offers a straightforward method for fixing and staining the pupal notum, both intact and after laser-wounding. With this technique, the ventral side of the pupa is glued down to a coverslip to immobilize the pupa, and the notum is carefully removed, fixed, and stained. The notum epithelium is mounted on a slide or between two coverslips to facilitate imaging from the tissue's dorsal or ventral side.The ongoing worldwide epidemic of diabetes increases the demand for the identification of environmental, nutritional, endocrine, genetic, and epigenetic factors affecting glucose uptake. The measurement of intracellular fluorescence is a widely used method to test the uptake of fluorescently-labeled glucose (FD-glucose) in cells in vitro, or for imaging glucose-consuming tissues in vivo. This assay assesses glucose uptake at a chosen time point. The intracellular analysis assumes that the metabolism of FD-glucose is slower than that of endogenous glucose, which participates in catabolic and anabolic reactions and signaling. However, dynamic glucose metabolism also alters uptake mechanisms, which would require kinetic measurements of glucose uptake in response to different factors. This article describes a method for measuring extracellular FD-glucose depletion and validates its correlation with intracellular FD-glucose uptake in cells and tissues ex vivo. Extracellular glucose depletion may be potentially applicable for high-throughput kinetic and dose-dependent studies, as well as identifying compounds with glycemic activity and their tissue-specific effects.Repeated injury to airway tissue can impair lung function and cause chronic lung disease, such as chronic obstructive pulmonary disease. Advances in regenerative medicine and bioreactor technologies offer opportunities to produce lab-grown functional tissue and organ constructs that can be used to screen drugs, model disease, and engineer tissue replacements. Here, a miniaturized bioreactor coupled with an imaging modality that allows in situ visualization of the inner lumen of explanted rat trachea during in vitro tissue manipulation and culture is described. Using this bioreactor, the protocol demonstrates imaging-guided selective removal of endogenous cellular components while preserving the intrinsic biochemical features and ultrastructure of the airway tissue matrix. Furthermore, the delivery, uniform distribution, and subsequent prolonged culture of exogenous cells on the decellularized airway lumen with optical monitoring in situ are shown. The results highlight that the imaging-guided bioreactor can potentially be used to facilitate the generation of functional in vitro airway tissues.Inherited immunity describes how some animals can pass on the "memory" of a previous infection to their offspring. This can boost pathogen resistance in their progeny and promote survival. While inherited immunity has been reported in many invertebrates, the mechanisms underlying this epigenetic phenomenon are largely unknown. The infection of Caenorhabditis elegans by the natural microsporidian pathogen Nematocida parisii results in the worms producing offspring that are robustly resistant to microsporidia. The present protocol describes the study of intergenerational immunity in the simple and genetically tractable N. parisii -C. elegans infection model. The current article describes methods for infecting C. elegans and generating immune-primed offspring. Methods are also given for assaying resistance to microsporidia infection by staining for microsporidia and visualizing infection by microscopy. In particular, inherited immunity prevents host cell invasion by microsporidia, and fluorescence in situ hybridization (FISH) can be used to quantify invasion events. The relative amount of microsporidia spores produced in the immune-primed offspring can be quantified by staining the spores with a chitin-binding dye. To date, these methods have shed light on the kinetics and pathogen specificity of inherited immunity, as well as the molecular mechanisms underlying it. These techniques, alongside the extensive tools available for C. elegans research, will enable important discoveries in the field of inherited immunity.Caenorhabditis elegans (C. elegans) have proved to be a valuable model system for studying developmental and cell biological processes. Understanding these biological processes often requires long-term and repeated imaging of the same animal. Long recovery times associated with conventional immobilization methods done on agar pads have detrimental effects on animal health making it inappropriate to repeatedly image the same animal over long periods of time. This paper describes a microfluidic chip design, fabrication method, on-chip C. elegans culturing protocol, and three examples of long-term imaging to study developmental processes in individual animals. The chip, fabricated with polydimethylsiloxane and bonded on a cover glass, immobilizes animals on a glass substrate using an elastomeric membrane that is deflected using nitrogen gas. Complete immobilization of C. elegans enables robust time-lapse imaging of cellular and sub-cellular events in an anesthetic-free manner. A channel geometry with a large cross-section allows the animal to move freely within two partially sealed isolation membranes permitting growth in the channel with a continuous food supply.

Autoři článku: Pickettreece0690 (Lindegaard Simonsen)