Broussardfox3232
Using the Milling-Assisted Loading (MAL) solid-state method for loading a poorly water-soluble drug (ibuprofen, IBP) within the SBA-15 matrix has given the opportunity to manipulate the physical state of drugs for optimizing bioavailability. The MAL method makes it easy to control and analyze the influence of the degree of loading on the physical state of IBP inside the SBA-15 matrix with an average pore diameter of 9.4 nm. It was found that the density of IBP molecules in an average pore size has a direct influence on both the glass transition and the mechanism of crystallization. Detailed analyzes of the crystallite distribution and melting by Raman mapping, x-ray diffraction, and differential scanning calorimetry have shown that the crystals are localized in the core of the channel and surrounded by a liquid monolayer. PRGL493 concentration The results of these complementary investigations have been used for determining the relevant parameters (related to the SBA-15 matrix and to the IBP molecule) and the nature of the physical state of the confined matter.Two-dimensional (2D) post-transition metal chalcogenides (PTMCs) have attracted attention due to their suitable bandgaps and lower exciton binding energies, making them more appropriate for electronic, optical, and water-splitting devices than graphene and monolayer transition metal dichalcogenides. Of the predicted 2D PTMCs, GaSe has been reliably synthesized and experimentally characterized. Despite this fact, quantities such as lattice parameters and band character vary significantly depending on which density functional theory (DFT) functional is used. Although many-body perturbation theory (GW approximation) has been used to correct the electronic structure and obtain the excited state properties of 2D GaSe, and solving the Bethe-Salpeter equation (BSE) has been used to find the optical gap, we find that the results depend strongly on the starting wavefunction. In an attempt to correct these discrepancies, we employed the many-body Diffusion Monte Carlo (DMC) method to calculate the ground and excited state properties of GaSe because DMC has a weaker dependence on the trial wavefunction. We benchmark these results with available experimental data, DFT [local-density approximation, Perdew-Burke-Ernzerhof (PBE), strongly constrained and appropriately normed (SCAN) meta-GGA, and hybrid (HSE06) functionals] and GW-BSE (using PBE and SCAN wavefunctions) results. Our findings confirm that monolayer GaSe is an indirect gap semiconductor (Γ-M) with a quasiparticle electronic gap in close agreement with experiment and low exciton binding energy. We also benchmark the optimal lattice parameter, cohesive energy, and ground state charge density with DMC and various DFT methods. We aim to present a terminal theoretical benchmark for pristine monolayer GaSe, which will aid in the further study of 2D PTMCs using DMC methods.In this article, a numerical implementation of the exact kinetic energy operator (KEO) for triatomic molecules (symmetric of XY2-type and asymmetric of YXZ-type) is presented. The implementation is based on the valence coordinates with the bisecting (XY2-type molecules) and bond-vector (YXZ) embeddings and includes the treatment of the singularity at linear geometry. The KEO is represented in a sum-of-product form. The singularity caused by the undetermined angle at the linear configuration is resolved with the help of the associated Legendre and Laguerre polynomials used as parameterized bending basis functions in the finite basis set representation. The exact KEO implementation is combined with the variational solver theoretical rovibrational energies, equipped with a general automatic symmetry-adaptation procedure and efficient basis step contraction schemes, providing a powerful computational solver of triatomic molecules for accurate computations of highly excited ro-vibrational spectra. The advantages of different basis set choices are discussed. Examples of specific applications for computing hot spectra of linear molecules are given.Achieving thermodynamic faithfulness and transferability across state points is an outstanding challenge in the bottom-up coarse graining of molecular models, with many efforts focusing on augmenting the form of coarse-grained interaction potentials to improve transferability. Here, we revisit the critical role of the simulation ensemble and the possibility that even simple models can be made more predictive through a smarter choice of ensemble. We highlight the efficacy of coarse graining from ensembles where variables conjugate to the thermodynamic quantities of interest are forced to respond to applied perturbations. For example, to learn activity coefficients, it is natural to coarse grain from ensembles with spatially varying external potentials applied to one species to force local composition variations and fluctuations. We apply this strategy to coarse grain both an atomistic model of water and methanol and a binary mixture of spheres interacting via Gaussian repulsions and demonstrate near-quantitative capture of activity coefficients across the whole composition range. Furthermore, the approach is able to do so without explicitly measuring and targeting activity coefficients during the coarse graining process; activity coefficients are only computed after-the-fact to assess accuracy. We hypothesize that ensembles with applied thermodynamic potentials are more "thermodynamically informative." We quantify this notion of informativeness using the Fisher information metric, which enables the systematic design of optimal bias potentials that promote the learning of thermodynamically faithful models. link2 The Fisher information is related to variances of structural variables, highlighting the physical basis underlying the Fisher information's utility in improving coarse-grained models.Sub-wavelength chiral resonators formed from artificial structures exhibit exceedingly large chiroptical responses compared to those observed in natural media. Owing to resonant excitation, chiral near fields can be significantly enhanced for these resonators, holding great promise for developing enantioselective photonic components such as biochemical sensors based on circular dichroism (CD) and spin-dependent nonlinear imaging. In the present work, strong linear and nonlinear chiroptical responses (scattering CD > 0.15 and nonlinear differential CDs > 0.4) at visible and near infrared frequencies are reported for the first time for individual micrometer-scale plasmonic and dielectric helical structures. link3 By leveraging dark-field spectroscopy and nonlinear optical microscopy, the circular-polarization-selective scattering behavior and nonlinear optical responses (e.g., second harmonic generation and two-photon photoluminescence) of 3D printed micro-helices with feature sizes comparable to the wavelength (total length is ∼5λ) are demonstrated. These micro-helices provide potential for readily accessible photonic platforms, facilitating an enantiomeric analysis of chiral materials. One such example is the opportunity to explore ultracompact photonic devices based on single, complex meta-atoms enabled by state-of-the-art 3D fabrication techniques.In this paper, we present a quantum stochastic model for spectroscopic lineshapes in the presence of a co-evolving and non-stationary background population of excitations. Starting from a field theory description for interacting bosonic excitons, we derive a reduced model whereby optical excitons are coupled to an incoherent background via scattering as mediated by their screened Coulomb coupling. The Heisenberg equations of motion for the optical excitons are then driven by an auxiliary stochastic population variable, which we take to be the solution of an Ornstein-Uhlenbeck process. Itô's lemma then allows us to easily construct and evaluate correlation functions and response functions. Focusing on the linear response, we compare our model to the classic Anderson-Kubo model. While similar in motivation, there are differences in the predicted lineshapes, notably in terms of asymmetry, and variation with the increasing background population.Excited states of Coulomb systems are studied within density functional theory with information theoretical quantities. The Ghosh-Berkowitz-Parr thermodynamic transcription is extended to excited states, and the concept of the local temperature is introduced. It is shown that extremization of information entropy or Fisher information results in a constant temperature. For Coulomb systems, there is a simple relation between the total energy and phase-space Fisher information. The phase-space fidelity between excited states is proportional to the position-space fidelity, with a factor of proportionality depending on total energies. The phase-space relative entropy is equal to the position-space relative entropy plus a term depending only on the total energies. The relationship between the phase-space fidelity susceptibility and Fisher information is also presented.A first principles quantum formalism to describe the non-adiabatic dynamics of electrons and nuclei based on a second quantization representation (SQR) of the electronic motion combined with the usual representation of the nuclear coordinates is introduced. This procedure circumvents the introduction of potential energy surfaces and non-adiabatic couplings, providing an alternative to the Born-Oppenheimer approximation. An important feature of the molecular Hamiltonian in the mixed first quantized representation for the nuclei and the SQR representation for the electrons is that all degrees of freedom, nuclear positions and electronic occupations, are distinguishable. This makes the approach compatible with various tensor decomposition Ansätze for the propagation of the nuclear-electronic wavefunction. Here, we describe the application of this formalism within the multi-configuration time-dependent Hartree framework and its multilayer generalization, corresponding to Tucker and hierarchical Tucker tensor decompositions of the wavefunction, respectively. The approach is applied to the calculation of the photodissociation cross section of the HeH+ molecule under extreme ultraviolet irradiation, which features non-adiabatic effects and quantum interferences between the two possible fragmentation channels, He + H+ and He+ + H. These calculations are compared with the usual description based on ab initio potential energy surfaces and non-adiabatic coupling matrix elements, which fully agree. The proof-of-principle calculations serve to illustrate the advantages and drawbacks of this formalism, which are discussed in detail, as well as possible ways to overcome them. We close with an outlook of possible application domains where the formalism might outperform the usual approach, for example, in situations that combine a strong static correlation of the electrons with non-adiabatic electronic-nuclear effects.We present an approach to perform origin invariant optical rotation calculations in the length dipole gauge without recourse to London atomic orbitals, called origin invariant length gauge [LG(OI)]. The LG(OI) approach works with any approximate wave function or density functional method, but here we focus on the implementation with the coupled cluster (CC) with single and double excitations method because of the lack of production-level alternatives. Preliminary numerical tests show the efficacy of the LG(OI) procedure and indicate that putting the origin in the center of mass of a molecule may not be an optimal choice for conventional CC-LG calculations.