Clarkfallesen6669

Z Iurium Wiki

Verze z 10. 9. 2024, 17:31, kterou vytvořil Clarkfallesen6669 (diskuse | příspěvky) (Založena nová stránka s textem „The performance is in the upper range of the reported performance by the works presented in the state of the art, advocating the relevance of the proposed…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

The performance is in the upper range of the reported performance by the works presented in the state of the art, advocating the relevance of the proposed method. The model was implemented in a small field programmable gate array board. Hence, a home monitoring device was created, composed of a processing unit, a sensing module and a display unit. The device is resilient, easy to self-assemble and operate, and can conceivably be employed for clinical analysis.

The novel coronavirus disease 2019 (COVID-19) is considered a pandemic by the World Health Organization (WHO). As of April 3, 2020, there were 1,009,625 reported confirmed cases, and 51,737 reported deaths. Doctors have been faced with a myriad of patients who present with many different symptoms. This raises two important questions. What are the common symptoms, and what are their relative importance?

A non-structured and incomplete COVID-19 dataset of 14,251 confirmed cases was preprocessed. This produced a complete and organized COVID-19 dataset of 738 confirmed cases. Six different feature selection algorithms were then applied to this new dataset. Five of these algorithms have been proposed earlier in the literature. The sixth is a novel algorithm being proposed by the authors, called Variance Based Feature Weighting (VBFW), which not only ranks the symptoms (based on their importance) but also assigns a quantitative importance measure to each symptom.

For our COVID-19 dataset, the five different fover, the proposed VBFW method achieved an accuracy of 92.1 % when used to build a one-class SVM model, and an NDCG@5 of 100 %.

Based on the dataset, and the feature selection algorithms employed here, symptoms of Fever, Cough, Fatigue, Sore Throat and Shortness of Breath are important symptoms of COVID-19. The VBFW algorithm also indicates that Fever and Cough symptoms were especially indicative of COVID-19, for the confirmed cases that are documented in our database.

Based on the dataset, and the feature selection algorithms employed here, symptoms of Fever, Cough, Fatigue, Sore Throat and Shortness of Breath are important symptoms of COVID-19. The VBFW algorithm also indicates that Fever and Cough symptoms were especially indicative of COVID-19, for the confirmed cases that are documented in our database.In this work, we propose a novel autoregressive event time-series model that can predict future occurrences of multivariate clinical events. Our model represents multivariate event time-series using different temporal mechanisms aimed to fit different temporal characteristics of the time-series. In particular, information about distant past is modeled through the hidden state space defined by an LSTM-based model, information on recently observed clinical events is modeled through discriminative projections, and information about periodic (repeated) events is modeled using a special recurrent mechanism based on probability distributions of inter-event gaps compiled from past data. We evaluate our proposed model on electronic health record (EHRs) data derived from MIMIC-III dataset. We show that our new model equipped with the above temporal mechanisms leads to improved prediction performance compared to multiple baselines.The assessment of surgical technical skills to be acquired by novice surgeons has been traditionally done by an expert surgeon and is therefore of a subjective nature. Nevertheless, the recent advances on IoT (Internet of Things), the possibility of incorporating sensors into objects and environments in order to collect large amounts of data, and the progress on machine learning are facilitating a more objective and automated assessment of surgical technical skills. This paper presents a systematic literature review of papers published after 2013 discussing the objective and automated assessment of surgical technical skills. 101 out of an initial list of 537 papers were analyzed to identify 1) the sensors used; 2) the data collected by these sensors and the relationship between these data, surgical technical skills and surgeons' levels of expertise; 3) the statistical methods and algorithms used to process these data; and 4) the feedback provided based on the outputs of these statistical methods and algorithms. Particularly, 1) mechanical and electromagnetic sensors are widely used for tool tracking, while inertial measurement units are widely used for body tracking; 2) path length, number of sub-movements, smoothness, fixation, saccade and total time are the main indicators obtained from raw data and serve to assess surgical technical skills such as economy, efficiency, hand tremor, or mind control, and distinguish between two or three levels of expertise (novice/intermediate/advanced surgeons); 3) SVM (Support Vector Machines) and Neural Networks are the preferred statistical methods and algorithms for processing the data collected, while new opportunities are opened up to combine various algorithms and use deep learning; and 4) feedback is provided by matching performance indicators and a lexicon of words and visualizations, although there is considerable room for research in the context of feedback and visualizations, taking, for example, ideas from learning analytics.High-resolution manometry (HRM) is the primary method for diagnosing esophageal motility disorders and its interpretation and classification are based on variables (features) from data of each swallow. Modeling and learning the semantics directly from raw swallow data could not only help automate the feature extraction, but also alleviate the bias from pre-defined features. CVT-313 With more than 32-thousand raw swallow data, a generative model using the approach of variational auto-encoder (VAE) was developed, which, to our knowledge, is the first deep-learning-based unsupervised model on raw esophageal manometry data. The VAE model was reformulated to include different types of loss motivated by domain knowledge and tuned with different hyper-parameters. Training of the VAE model was found sensitive on the learning rate and hence the evidence lower bound objective (ELBO) was further scaled by the data dimension. Case studies showed that the dimensionality of latent space have a big impact on the learned semantics. In particular, cases with 4-dimensional latent variables were found to encode various physiologically meaningful contraction patterns, including strength, propagation pattern as well as sphincter relaxation. Cases with so-called hybrid L2 loss seemed to better capture the coherence of contraction/relaxation transition. Discriminating capability was further evaluated using simple linear discriminative analysis (LDA) on predicting swallow type and swallow pressurization, which yields clustering patterns consistent with clinical impression. The current work on modeling and understanding swallow-level data will guide the development of study-level models for automatic diagnosis as the next stage.Electromyogram (EMG) signals have had a great impact on many applications, including prosthetic or rehabilitation devices, human-machine interactions, clinical and biomedical areas. In recent years, EMG signals have been used as a popular tool to generate device control commands for rehabilitation equipment, such as robotic prostheses. This intention of this study was to design an EMG signal-based expert model for hand-grasp classification that could enhance prosthetic hand movements for people with disabilities. The study, thus, aimed to introduce an innovative framework for recognising hand movements using EMG signals. The proposed framework consists of logarithmic spectrogram-based graph signal (LSGS), AdaBoost k-means (AB-k-means) and an ensemble of feature selection (FS) techniques. First, the LSGS model is applied to analyse and extract the desirable features from EMG signals. Then, to assist in selecting the most influential features, an ensemble FS is added to the design. Finally, in the classification phase, a novel classification model, named AB-k-means, is developed to classify the selected EMG features into different hand grasps. The proposed hybrid model, LSGS-based scheme is evaluated with a publicly available EMG hand movement dataset from the UCI repository. Using the same dataset, the LSGS-AB-k-means design model is also benchmarked with several classifications including the state-of-the-art algorithms. The results demonstrate that the proposed model achieves a high classification rate and demonstrates superior results compared to several previous research works. This study, therefore, establishes that the proposed model can accurately classify EMG hand grasps and can be implemented as a control unit with low cost and a high classification rate.

In recent years, reinforcement learning (RL) has gained traction in the healthcare domain. In particular, RL methods have been explored for haemodynamic optimization of septic patients in the Intensive Care Unit. Most hospitals however, lack the data and expertise for model development, necessitating transfer of models developed using external datasets. This approach assumes model generalizability across different patient populations, the validity of which has not previously been tested. In addition, there is limited knowledge on safety and reliability. These challenges need to be addressed to further facilitate implementation of RL models in clinical practice.

We developed and validated a new reinforcement learning model for hemodynamic optimization in sepsis on the MIMIC intensive care database from the USA using a dueling double deep Q network. We then transferred this model to the European AmsterdamUMCdb intensive care database. T-Distributed Stochastic Neighbor Embedding and Sequential Organ Failure previous work.

We created a reinforcement learning model for optimal bedside hemodynamic management and demonstrated model transferability between populations from the USA and Europe for the first time. We proposed new methods for deep policy inspection integrating expert domain knowledge. This is expected to facilitate progression to bedside clinical decision support for the treatment of critically ill patients.

We created a reinforcement learning model for optimal bedside hemodynamic management and demonstrated model transferability between populations from the USA and Europe for the first time. We proposed new methods for deep policy inspection integrating expert domain knowledge. This is expected to facilitate progression to bedside clinical decision support for the treatment of critically ill patients.As the population ages, patients' complexity and the scope of their care is increasing. Over 60% of the population is 65 years of age or older and suffers from multi-morbidity, which is associated with two times as many patient-physician encounters. Yet clinical practice guidelines (CPGs) are developed to treat a single disease. To reconcile these two competing issues, previously we developed a framework for mitigation, i.e., identifying and addressing adverse interactions in multi-morbid patients managed according to multiple CPGs. That framework relies on first-order logic (FOL) to represent CPGs and secondary medical knowledge and FOL theorem proving to establish valid patient management plans. In the work presented here, we leverage our earlier research and simplify the mitigation process by representing it as a planning problem using the Planning Domain Definition Language (PDDL). This new framework, called MitPlan, identifies and addresses adverse interactions using durative planning actions that embody clinical actions (including medication administration and patient testing), supports a physician-defined length of planning horizons, and optimizes plans based on patient preferences and action costs.

Autoři článku: Clarkfallesen6669 (Skou Ellegaard)