Mccarthynikolajsen8558

Z Iurium Wiki

Verze z 10. 9. 2024, 14:34, kterou vytvořil Mccarthynikolajsen8558 (diskuse | příspěvky) (Založena nová stránka s textem „Rivers are a key part of the hydrological cycle and a vital conduit of water resources, but are under increasing threat from anthropogenic pressures. Linki…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Rivers are a key part of the hydrological cycle and a vital conduit of water resources, but are under increasing threat from anthropogenic pressures. Linking pressures with ecosystem services is challenging because the processes interconnecting the physico-chemical, biological and socio-economic elements are usually captured using heterogenous methods. Our objectives were, firstly, to advance an existing proof-of-principle Bayesian belief network (BBN) model for integration of ecosystem services considerations into river management. We causally linked catchment stressors with ecosystem services using weighted evidence from an expert workshop (capturing confidence among expert groups), legislation and published literature. The BBN was calibrated with analyses of national monitoring data (including non-linear relationships and ecologically meaningful breakpoints) and expert judgement. We used a novel expected index of desirability to quantify the model outputs. Secondly, we applied the BBN to three case study cof our approach, including the expected index of desirability, can be adapted globally.Countries are now struggling to improve their recycling efficiency of an industrial operational system to achieve the Sustainable Development Goals, yet scant studies have viewed the series-parallel recycling structure of the system based on data envelopment analysis (DEA). This research divides the system into industrial production and industrial waste treatment (IWT) processes connected serially, while the IWT process is further separated into treatment sub-units for wastewater, waste gas, and solid wastes connected in parallel. We propose a dynamic series-parallel recycling DEA model within a directional distance function to measure efficiency and discuss the efficiency relationship among the system, processes, and sub-units. By using the spatial Durbin model, we explore factors that mainly influence the efficiency for the 30 provinces during 2011-2019. The results show the following. (1) The medium performance of the industrial operational system with an average overall recycling efficiency of 0.69 is mainly caused by the poor performance of the IWT process with a score of 0.61. (2) The highest performance is observed in the wastewater treatment sub-unit, followed by waste gas treatment and solid waste treatment sub-units. (3) Market-based environmental regulations significantly promote local IWT efficiency, while command-and-control environmental regulations have no significant effect on local IWT efficiency. But they all have significant spatial spillovers. The voluntary environmental regulations have no significant impact.Ground-level ozone (O3) is a secondary air pollutant and affects the roots and soil processes of trees. Eltanexor supplier Therefore, O3 can affect the uptake and allocation of nutrients in trees, which merits further clarification. A fumigation experiment with five O3 levels was conducted in 15 open top chambers for two poplar clones, and the concentrations of six macronutrients (N, P, K, S, Ca, Mg) in different organs and leaf positions were determined. Under all O3 levels, the concentration of mobile nutrients (N and P) was higher in upper leaves than in lower leaves, while the non-mobile nutrients (Ca and S) concentration was the opposite. Relative to charcoal filtered ambient air (CF), high O3 treatment (NF60) significantly increased the concentration of mobile nutrients K and Mg in upper leaves by 38 % and 33 %, in lower leaves by 142 % and 65 %, respectively, which suggested the effect of O3 on their concentrations was greater at the lower leaf position than at the upper leaf position. Elevated O3 significantly increased the macronutrient concentrations in most organs. The effects of O3 on nutrient concentrations were attributed using graphical vector analysis, suggested that the increase of nutrient concentration in the shoots was attributed to excessive nutrient stocks, while their increase in root was attributed to the "concentration" effect. Compared to CF, NF60 also reduced the root-to-shoot ratio of N, P, S, K, Ca and Mg stocks by 34 %, 39 %, 37 %, 64 %, 46 % and 42 %, respectively, indicating the allocation of increased nutrients to shoots in response to O3 stress. Changes in the allocation pattern of nutrients in different leaf positions and organs of poplar were primarily in response to O3 stress since these nutrients play important roles in some physiological processes. These results will help improve the plantation nutrient utilization by optimizing fertilizer management regimes under O3 pollution.Progressively stringent regulations regarding vehicle emissions and fuel economy have spurred technology diversification in light-duty passenger vehicles (LDPVs). To assess the real-world emissions and fuel economy performances of hybrid electric vehicles (HEVs) compared to conventional internal combustion engine (ICE) vehicles, on-road measurements of ten gasoline, four diesel and six full hybrid LDPVs were performed using portable emissions measurement systems (PEMS) in Macao, China. The hot-running emission results indicate that the high emission risks of gasoline vehicles are associated with high mileage and old model years. Diesel vehicles are found to be the highest pollutant emitters in this study due to the intentional removal of aftertreatment systems. Under hot-running conditions, HEVs, as expected, could achieve carbon-reduction benefits of approximately 30 % (i.e., lower CO2 emissions and fuel consumption) compared to their conventional gasoline counterparts, while no measurable reduction in pollutant emissions was observed except in NOX (~70 % reduction). In contrast, the cold-start extra emissions (CSEEs) of CO2 reached 120-364 g/start for these HEVs, even exceeding the maximum values of conventional gasoline vehicles. However, the higher CO2 CSEEs of HEVs can be far offset by their hot-running emission reduction benefits. For tailpipe pollutants, the CSEEs of the HEVs were reduced by 21 %-68 % on average in comparison to those of conventional gasoline vehicles. Furthermore, strong correlations (R2 values of 0.69-0.89) between the road grades and relative emissions were observed. These results can provide necessary information regarding the improvement of future LDPV emission models and inventories.Considering the main problems presented in the typical solid wastes antibiotic fermentation dregs (AFDs) composting that the residual antibiotics could result in the propagation of antibiotic resistance genes (ARGs), and the reduced value of agronomic production caused by the ammonia gas (NH3) emissions. This study established a bio-augmented tylosin fermentation dregs (TFDs) aerobic co-composting system to investigate the effects of a novel isolated high-efficiency strain Klebsiella sp. TN-1 inoculation on tylosin degradation, reduction in ammonia emissions, and ARG abundances during this process. Results showed that the application of strain Klebsiella sp. TN-1 extended the thermophilic stage and promoted compost maturity. Moreover, bio-enhanced co-composting with strain Klebsiella sp. TN-1 led to a totally degradation of tylosin, and removed most of ARGs, metal resistance genes (MRGs) and mobile genetic elements (MGEs), and also effectively reduce ammonia emission by 49.76 %.via increasing ammoxidation rates. Principal co-ordinates analysis further suggested that the strain Klebsiella sp. TN-1 had little influence on the bacterial community composition, while the changes of other physical and chemical properties during this process were the main reasons for the evolution of bacterial community and propagation of ARGs in the TFDs co-composting. This study suggests the potential of the bio-enhanced strain Klebsiella sp. TN-1 for antibiotic biodegradation and its application for nitrogen conservation in the AFDs co-composting process, which could decrease the risk of ARGs spreading and make compost products more secure.

Myocardial infarction is an important cause of cardiovascular mortality and can be precipitated by climatic factors. The temperature dependence of myocardial infarction risk has been well examined in temperate settings. Fewer studies have investigated this in the tropics where thermal amplitudes are narrower. This study investigated how ambient temperature influenced the risk of non-ST segment elevation myocardial infarction (NSTEMI), an increasingly common type of myocardial infarction, in the tropical city-state of Singapore.

All nationally reported NSTEMI cases from 2009 to 2018 were included and assessed for its short-term association with ambient temperature using conditional Poisson regression models that comprised a three-way interaction term with year, month and day of the week and adjusted for relative humidity. The Distributed Lag Non-Linear Modelling (DLNM) was used to account for the immediate and lagged effects of environmental exposures. Stratified analysis by sex and age groups was undertakperature events may trigger more instances of NSTEMI in tropical cosmopolitan cities.Microplastics have been investigated over the last decade as potential transport vectors for other pollutants. However, the specific role of plastic aging, in which plastics change their characteristics over time when exposed to environmental agents, has been overlooked. Therefore, sorption experiments were herein conducted using virgin and aged (by ozone treatment or rooftop weathering) microplastic particles of LDPE - low-density polyethylene, PET - poly(ethylene terephthalate), or uPVC - unplasticized poly(vinyl chloride). The organic micropollutants (OMPs) selected as sorbates comprise a diversified group of priority substances and contaminants of emerging concern, including pharmaceutical substances (florfenicol, trimethoprim, diclofenac, tramadol, citalopram, venlafaxine) and pesticides (alachlor, clofibric acid, diuron, pentachlorophenol), analyzed at trace concentrations (each ≤100 μg L-1). Sorption kinetics and equilibrium isotherms were obtained, as well as the confirmation that the aging degree of behavior of microplastics on soil-plant systems.Autotrophic denitrification using inorganic compounds as electron donors has gained increasing attention in the field of wastewater treatment due to its numerous advantages, such as no need for exogenous organic carbon, low energy input, and low sludge production. Tetracycline (TC), a refractory contaminant, is often found coexisting with nutrients (NO3- and PO43-) in wastewater, which can negatively affect the biological nutrient removal process because of its biological toxicity. However, the performance of autotrophic denitrification under TC stress has rarely been reported. In this study, the effects of TC on autotrophic denitrification with thiosulfate (Na2S2O3) and iron (II) sulfide (FeS) as the electron donors were investigated. With Na2S2O3 as the electron donor, TC slowed down the nitrate removal rate, which decreased from 1.32 to 0.18 d-1, when TC concentration increased from 0 mg/L to 50 mg/L. When TC concentration was higher than 2 mg/L, nitrite reduction was seriously inhibited, leading to nitrite accumulation. With FeS as the electron donor, nitrate removal was much more efficient under TC-stressed conditions, and no distinct nitrite accumulation was observed when the initial TC concentration was as high as 10 mg/L, indicating the effective detoxification of FeS. The detoxification effects in the FeS autotrophic denitrification system mainly resulted from the rapid adsorption of TC by FeS and effective degradation of TC, as proven by a relatively higher living biomass area. This study offers new insights into the response of sulfur-based autotrophic denitrifiers to TC stress and demonstrates that the FeS-based autotrophic denitrification process is a promising technology for the treatment of wastewater containing emerging contaminants and nutrients.

Autoři článku: Mccarthynikolajsen8558 (Albright Giles)