Stillingskovsgaard9466

Z Iurium Wiki

Verze z 10. 9. 2024, 13:23, kterou vytvořil Stillingskovsgaard9466 (diskuse | příspěvky) (Založena nová stránka s textem „Fresh fish are highly perishable, owing mainly to their moisture content, high amount of free amino acids and polyunsaturated fatty acids. Microorganisms a…“)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Fresh fish are highly perishable, owing mainly to their moisture content, high amount of free amino acids and polyunsaturated fatty acids. Microorganisms and chemical reactions cause the spoilage, leading to loss in quality, human health risks and a market value reduction. Therefore, the fishing industry has always been willing to explore new technologies to increase quality and safety of fish products through a decrease of the microbiological and biochemical damage. In this context, antimicrobial active packaging is one such promising solution to meet consumer demands. The main objective of this study was to evaluate the effects of an active polypropylene-based packaging functionalized with the antimicrobial peptide 1018K6 on microbial growth, physicochemical properties and the sensory attributes of raw salmon fillets. The results showed that application of 1018K6-polypropylene strongly inhibited the microbial growth of both pathogenic and specific spoilage organisms (SSOs) on fish fillets after 7 days. Moreover, salmon also kept its freshness as per volatile chemical spoilage indices (CSIs) during storage. Similar results were obtained on hamburgers of Sarda sarda performing the same analyses. This work provides further evidence that 1018K6-polymers have good potential as antimicrobial packaging for application in the food market to enhance quality and preserve the sensorial properties of fish products.A green technique was developed to extract hyaluronic acid (HA) from tuna vitreous humor (TVH) for its potential application in managing dry eye disease. Deep eutectic solvents (DES) were used to extract HA and were synthesized using natural compounds (lactic acid, fructose, and urea). The DES, the soluble fraction of TVH in DES (SF), and the precipitated extracts (PE) were evaluated for their potential use in dry eye disease treatment. In vitro experiments on human corneal epithelial cell lines and the effect on dry eye-associated microorganisms were performed. The influence of the samples on the HCE viability, their intracellular reactive oxygen species (ROS) scavenging capacity, inflammatory response, and antimicrobial properties were studied. According to the results, all samples displayed an antioxidant effect, which was significantly higher for PE in comparison to SF. Most of the tested samples did not induce an inflammatory response in cells, which confirmed the safety in ophthalmic formulations. In addition, the DES and SF proved to be efficient against the studied bacterial strains, while PE did not show an antimicrobial effect. Hence, both DES and SF at defined concentrations could be used as potential compounds in dry eye disease management.Chinese red sour soup is a traditional fermented product famous in the southwestern part of China owing to its distinguished sour and spicy flavor. In the present study, the effect of inoculation of lactic acid bacteria (LAB) on the microbial communities and metabolite contents of the Chinese red sour soup was investigated. Traditional red sour soup was made with tomato and red chilli pepper and a live count (108 CFU/mL) of five bacterial strains (including Clostridium intestinalis Lacticaseibacillus rhamnosus Lactiplantibacillus plantarum Lacticaseibacillus casei Lactobacillus paracei) was added and fermented for 30 days in an incubator at 37 °C. Three replicates were randomly taken at 0 d, 5 d, 10 d, 15 d, 20 d, 25 d and 30 d of fermentation, with a total of 21 sour soup samples. Metabolomic analysis and 16S-rDNA amplicon sequencing of soup samples were performed to determine microbial diversity and metabolite contents. Results revealed that fermentation resulted in the depletion of native bacterial strains as LAB dominated over other microbes, resulting in differences in the relative abundance of bacteria, and types or contents of metabolites. A decrease (p less then 0.01) in Shannon and Simpson indices was observed at different fermentation times. The metabolomic analyses revealed a significant increase in the relative content of 10 metabolites (particularly lactic acid, thymine, and ascorbic acid) in fermented samples as compared to the control. The correlation network revealed a positive association of Lacticaseibacillus rhamnosus with differentially enriched metabolites including lactic acid, ascorbic acid, and chlorogenic acid, which can desirably contribute to the flavor and quality of the red sour soup.Reverse-phase solid-phase extraction (SPE) is regularly used for separating and purifying food-derived oligosaccharides and peptides prior to liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. However, the diversity in physicochemical properties of peptides may prevent the complete separation of the two types of analytes. Peptides present in the oligosaccharide fraction not only interfere with glycomics analysis but also escape peptidomics analysis. This work evaluated different SPE approaches for improving LC-MS/MS analysis of both oligosaccharides and peptides through testing on peptide standards and a food sample of commercial interest (proteolyzed almond extract). Compared with conventional reverse-phase SPE, mixed-mode SPE (reverse-phase/strong cation exchange) was more effective in retaining small/hydrophilic peptides and capturing them in the high-organic fraction and thus allowed the identification of more oligosaccharides and dipeptides in the proteolyzed almond extract, with satisfactory MS/MS confirmation. Overall, mixed-mode SPE emerged as the ideal method for simultaneously improving the identification of food-derived oligosaccharides and small peptides using LC-MS/MS analysis.Wholegrain soft wheat flours can be obtained by either roller milling or stone milling. In this paper, we report on the continuation of a study aimed at analysing compositional and technological differences between differently milled wholegrain flours. Eight mixes of soft wheat grains were stone milled and roller milled and the milling products analysed for their phytic acid, lipids composition to determine the presence of trans-fatty acids and damaged starch. A wholegrain flour milled with a laboratory disk mill was also analysed as comparison, as well as seven wholegrain flours purchased on the market. For phytic acid we found that that there is no compositional difference between a stone milled or a roller milled flour if the milling streams are all recombined the milling streams instead have different amounts of phytic acid which is mainly present in the fine bran and coarse bran. It was not possible to highlight differences in the milling technology due to the presence of trans-fatty acids in the stone milled wholegrain flour whereas it was possible to find that starch damage depended on the milling method with stone milled wholegrain flours having in all cases significantly higher values than the roller milled ones.Sustainable and nutritious alternatives are needed to feed the ever-increasing world population. The successful incorporation of edible-cricket protein (ECP) into foods needs deeper consumer insights. Treatments (plain, Italian, and Cajun pita chips containing 6.9% w/w ECP) were evaluated by subjects for overall liking (OL), emotions, and purchase intent (PI) in three different moments (1) before tasting, (2) after tasting/before ECP statement, and (3) after tasting/after ECP statement. Attributes' liking scores were evaluated only after tasting/before ECP statement. Liking scores (mixed-effects ANOVA), emotions, and PI across moments within treatments/across treatments within moments were evaluated. Emotion-based penalty-lift analyses for OL within moments were assessed using two-sample t-tests (p less then 0.05). Dihydroethidium solubility dmso Random forest model analyzed after-tasting informed PI and variables' importance. Although formulations' OL and PI were similar across moments, plain and Italian chips had higher after-tasting (before and after ECP statement) OL than the Cajun chips. Moments indirectly affected OL via emotions elicitation. Valence and activation/arousal emotions discriminated across moments for the plain treatment whereas valence and mostly activation/arousal terms discriminated across moments for the Italian and Cajun treatments, respectively. For either formulation or moment, "interested" and "adventurous" positively affected OL. Before and after-tasting attribute liking, "satisfied," and "enthusiastic" emotions were critical in predicting after-tasting informed PI.Cardoon (Cynara cardunculus L.) is a Mediterranean plant and member of the Asteraceae family that includes three botanical taxa, the wild perennial cardoon (C. cardunculus L. var. sylvestris (Lamk) Fiori), globe artichoke (C. cardunculus L. var. scolymus L. Fiori), and domesticated cardoon (C. cardunculus L. var. altilis DC.). Cardoon has been widely used in the Mediterranean diet and folk medicine since ancient times. Today, cardoon is recognized as a plant with great industrial potential and is considered as a functional food, with important nutritional value, being an interesting source of bioactive compounds, such as phenolics, minerals, inulin, fiber, and sesquiterpene lactones. These bioactive compounds have been vastly described in the literature, exhibiting a wide range of beneficial effects, such as antimicrobial, anti-inflammatory, anticancer, antioxidant, lipid-lowering, cytotoxic, antidiabetic, antihemorrhoidal, cardiotonic, and choleretic activity. In this review, an overview of the cardoon nutritional and phytochemical composition, as well as its biological potential, is provided, highlighting the main therapeutic effects of the different parts of the cardoon plant on metabolic disorders, specifically associated with hepatoprotective, hypolipidemic, and antidiabetic activity.A novel and efficient immunoaffinity column (IAC) based on bispecific monoclonal antibody (BsMAb) recognizing aflatoxin B1 (AFB1) and ochratoxin A (OTA) was prepared and applied in simultaneous extraction of AFB1 and OTA from food samples and detection of AFB1/OTA combined with ic-ELISA (indirect competitive ELISA). Two deficient cell lines, hypoxanthine guanine phosphoribosyl-transferase (HGPRT) deficient anti-AFB1 hybridoma cell line and thymidine kinase (TK) deficient anti-OTA hybridoma cell line, were fused to generate a hybrid-hybridoma producing BsMAb against AFB1 and OTA. The subtype of the BsMAb was IgG1 via mouse antibody isotyping kit test. The purity and molecular weight of BsMAb were confirmed by SDS-PAGE method. The cross-reaction rate with AFB2 was 37%, with AFG1 15%, with AFM1 48%, with AFM2 10%, and with OTB 36%. Negligible cross-reaction was observed with other tested compounds. The affinity constant (Ka) was determined by ELISA. The Ka (AFB1) and Ka (OTA) was 2.43 × 108 L/mol and 1.57 × 108 were 95.4%~105.0% with ic-ELISA, and the correlations between the detection results and LC-MS were above 0.9. The developed IAC combined with ic-ELISA is reliable and could be applied to the detection of AFB1 and OTA in grains.Effective biopreservation measures are needed to control the growth of postprocess Listeria monocytogenes contamination in fresh whey cheeses stored under refrigeration. This study assessed growth and biocontrol of inoculated (3 log10 CFU/g) L. monocytogenes in vacuum-packed, fresh (1-day-old) or 'aged' (15-day-old) Anthotyros whey cheeses, without or with 5% of a crude enterocin A-B-P extract (CEntE), during storage at 4 °C. Regardless of CEntE addition, the pathogen increased by an average of 2.0 log10 CFU/g in fresh cheeses on day 15. Gram-negative spoilage bacteria also increased by an average of 2.5 log10 CFU/g. However, from day 15 to the sell-by date (days 35-40), L. monocytogenes growth ceased, and progressively, the populations of the pathogen declined in most cheeses. This was due to an unmonitored, batch-dependent natural acidification by spoilage lactic acid bacteria, predominantly Leuconostoc mesenteroides, which reduced the cheese pH to 5.5, and finally to ≤5.0. The pH reductions and associated declines in pathogen viability were greater in the CEntE-treated samples within each batch.

Autoři článku: Stillingskovsgaard9466 (Munk Albrektsen)