Boelnichols7473
Understanding the neuroplastic capacity of people with Down syndrome (PwDS) can potentially reveal the causal relationship between aberrant brain organization and phenotypic characteristics. We used resting-state EEG recordings to identify how a neuroplasticity-triggering training protocol relates to changes in the functional connectivity of the brain's intrinsic cortical networks. Brain activity of 12 PwDS before and after a 10-week protocol of combined physical and cognitive training was statistically compared to quantify changes in directed functional connectivity in conjunction with psychosomatometric assessments. PwDS showed increased connectivity within the left hemisphere and from left-to-right hemisphere, as well as increased physical and cognitive performance. Our findings reveal a strong adaptive neuroplastic reorganization as a result of the training that leads to a less-random network with a more pronounced hierarchical organization. Our results go beyond previous findings by indicating a transition to a healthier, more efficient, and flexible network architecture, with improved integration and segregation abilities in the brain of PwDS. Resting-state electrophysiological brain activity is used here for the first time to display meaningful relationships to underlying Down syndrome processes and outcomes of importance in a translational inquiry. This trial is registered with ClinicalTrials.gov Identifier NCT04390321.Human brain connectome studies aim to both explore healthy brains, and extract and analyze relevant features associated with pathologies of interest. this website Usually this consists of modeling the brain connectome as a graph and using graph metrics as features. A fine brain description requires graph metrics computation at the node level. Given the relatively reduced number of patients in standard cohorts, such data analysis problems fall in the high-dimension, low-sample-size framework. In this context, our goal is to provide a machine learning technique that exhibits flexibility, gives the investigator an understanding of the features and covariates, allows visualization and exploration, and yields insight into the data and the biological phenomena at stake. The retained approach is dimension reduction in a manifold learning methodology; the originality is that the investigator chooses one (or several) reduced variables. The proposed method is illustrated in two studies. The first one addresses comatose patients; the second one compares young and elderly populations. The method sheds light on the differences between brain connectivity graphs using graph metrics and potential clinical interpretations of these differences.At the inception of human brain mapping, two principles of functional anatomy underwrote most conceptions-and analyses-of distributed brain responses namely, functional segregation and integration. There are currently two main approaches to characterizing functional integration. The first is a mechanistic modeling of connectomics in terms of directed effective connectivity that mediates neuronal message passing and dynamics on neuronal circuits. The second phenomenological approach usually characterizes undirected functional connectivity (i.e., measurable correlations), in terms of intrinsic brain networks, self-organized criticality, dynamical instability, and so on. This paper describes a treatment of effective connectivity that speaks to the emergence of intrinsic brain networks and critical dynamics. It is predicated on the notion of Markov blankets that play a fundamental role in the self-organization of far from equilibrium systems. Using the apparatus of the renormalization group, we show that much of the phenomenology found in network neuroscience is an emergent property of a particular partition of neuronal states, over progressively coarser scales. As such, it offers a way of linking dynamics on directed graphs to the phenomenology of intrinsic brain networks.Brain controllability properties are normally derived from the white matter fiber tracts in which the neural substrate of the actual energy consumption, namely the gray matter, has been widely ignored. Here, we study the relationship between gray matter volume of regions across the whole cortex and their respective control properties derived from the structural architecture of the white matter fiber tracts. The data suggests that the ability of white fiber tracts to exhibit control at specific nodes not only depends on the connection strength of the structural connectome but additionally depends on gray matter volume at the host nodes. Our data indicate that connectivity strength and gray matter volume interact with respect to the brain's control properties. Disentangling effects of the regional gray matter volume and connectivity strength, we found that frontal and sensory areas play crucial roles in controllability. Together these results suggest that structural and regional properties of the white matter and gray matter provide complementary information in studying the control properties of the intrinsic structural and functional architecture of the brain.Cytosolic PSD-95 interactor (cypin) regulates many aspects of neuronal development and function, ranging from dendritogenesis to synaptic protein localization. While it is known that removal of postsynaptic density protein-95 (PSD-95) from the postsynaptic density decreases synaptic N-methyl-D-aspartate (NMDA) receptors and that cypin overexpression protects neurons from NMDA-induced toxicity, little is known about cypin's role in AMPA receptor clustering and function. Experimental work shows that cypin overexpression decreases PSD-95 levels in synaptosomes and the PSD, decreases PSD-95 clusters/μm2, and increases mEPSC frequency. Analysis of microelectrode array (MEA) data demonstrates that cypin or cypinΔPDZ overexpression increases sensitivity to CNQX (cyanquixaline) and AMPA receptor-mediated decreases in spike waveform properties. Network-level analysis of MEA data reveals that cypinΔPDZ overexpression causes networks to be resilient to CNQX-induced changes in local efficiency. Incorporating these findings into a computational model of a neural circuit demonstrates a role for AMPA receptors in cypin-promoted changes to networks and shows that cypin increases firing rate while changing network functional organization, suggesting cypin overexpression facilitates information relay but modifies how information is encoded among brain regions.